Comprehensive Characterization of RNA-Binding Proteins in Colon Adenocarcinoma Identifies a Novel Prognostic Signature for Predicting Clinical Outcomes and Immunotherapy Responses Based on Machine Learning

免疫疗法 列线图 基因签名 肿瘤科 结直肠癌 计算生物学 癌症免疫疗法 签名(拓扑) 比例危险模型 生物 基因表达 癌症 免疫系统 内科学 生物信息学 基因 医学 免疫学 遗传学 数学 几何学
作者
Jie Ren,Changmiao Wang,Miao Ye,Qihang Yuan,Chao Wang,Xiaoshi Feng
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:26 (1): 163-182 被引量:17
标识
DOI:10.2174/1386207325666220404125228
摘要

RNA-binding proteins (RBPs) are crucial factors that function in the posttranscriptional modification process and are significant in cancer.This research aimed for a multigene signature to predict the prognosis and immunotherapy response of patients with colon adenocarcinoma (COAD) based on the expression profile of RNA-binding proteins (RBPs).COAD samples retrieved from the TCGA and GEO datasets were utilized for a training dataset and a validation dataset. Totally, 14 shared RBP genes with prognostic significance were identified. Non-negative matrix factorization clusters defined by these RBPs could stratify COAD patients into two molecular subtypes. Cox regression analysis and identification of 8-gene signature categorized COAD patients into high- and low-risk populations with significantly different prognosis and immunotherapy responses.Our prediction signature was superior to another five well-established prediction models. A nomogram was generated to quantificationally predict the overall survival (OS) rate, validated by calibration curves. Our findings also indicated that high-risk populations possessed an enhanced immune evasion capacity and low-risk populations might benefit immunotherapy, especially for the joint combination of PD-1 and CTLA4 immunosuppressants. DHX15 and LARS2 were detected with significantly different expressions in both datasets, which were further confirmed by qRTPCR and immunohistochemical staining.Our observations supported an eight-RBP-related signature that could be applied for survival prediction and immunotherapy response of patients with COAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zephyr发布了新的文献求助10
刚刚
mimimi发布了新的文献求助10
刚刚
诗梦完成签到,获得积分10
1秒前
疑问师发布了新的文献求助10
1秒前
Hindiii完成签到,获得积分10
1秒前
卿君应助稳重的白猫采纳,获得10
1秒前
zombie发布了新的文献求助10
1秒前
Nancy驳回了Ava应助
2秒前
66完成签到,获得积分10
2秒前
Hello应助阎幻天采纳,获得10
2秒前
科目三应助小杨采纳,获得10
2秒前
2秒前
keleboys发布了新的文献求助150
2秒前
2秒前
2秒前
黑森林完成签到,获得积分10
2秒前
3秒前
关关难过关关过完成签到,获得积分10
3秒前
kyrie发布了新的文献求助10
3秒前
细心的老头完成签到,获得积分10
3秒前
4秒前
4秒前
Jupiter完成签到,获得积分10
5秒前
s1kl完成签到,获得积分10
5秒前
nicewink发布了新的文献求助10
6秒前
上官子默完成签到,获得积分10
6秒前
6秒前
YuGe完成签到,获得积分10
7秒前
zzzzzz发布了新的文献求助10
7秒前
liquor完成签到,获得积分10
7秒前
7秒前
fin发布了新的文献求助10
7秒前
7秒前
珥多发布了新的文献求助10
8秒前
SciGPT应助云溪采纳,获得10
8秒前
8秒前
Xie发布了新的文献求助10
8秒前
BoBO发布了新的文献求助10
8秒前
9秒前
宋铁柱发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3545137
求助须知:如何正确求助?哪些是违规求助? 3122281
关于积分的说明 9351712
捐赠科研通 2821000
什么是DOI,文献DOI怎么找? 1550846
邀请新用户注册赠送积分活动 722842
科研通“疑难数据库(出版商)”最低求助积分说明 713355