SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images

人工智能 计算机科学 像素 模式识别(心理学) 计算机视觉 嵌入 分割 图像(数学) 匹配(统计) 医学影像学 数学 统计
作者
Ke Yan,Jinzheng Cai,Dakai Jin,Shun Miao,Dazhou Guo,Adam P. Harrison,Youbao Tang,Jing Xiao,Jingjing Lu,Le Lü
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2658-2669 被引量:17
标识
DOI:10.1109/tmi.2022.3169003
摘要

Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
l2023发布了新的文献求助10
刚刚
QWE发布了新的文献求助20
1秒前
薰硝壤应助Faye采纳,获得10
2秒前
2秒前
3秒前
mzm发布了新的文献求助10
3秒前
3秒前
Lucas应助峰林采纳,获得20
3秒前
Saureus完成签到,获得积分10
4秒前
4秒前
大个应助六儿采纳,获得10
7秒前
7秒前
大胆冰旋发布了新的文献求助10
7秒前
9秒前
你好完成签到,获得积分10
9秒前
10秒前
JamesPei应助谷歌采纳,获得10
11秒前
Kevin_KYT_577完成签到,获得积分10
12秒前
Orange应助caicai采纳,获得10
13秒前
13秒前
CipherSage应助部落格123采纳,获得10
14秒前
虚拟的麦片完成签到,获得积分20
14秒前
过分动真发布了新的文献求助10
15秒前
完美世界应助狄念梦采纳,获得10
15秒前
叶子发布了新的文献求助10
15秒前
18秒前
我不李姐发布了新的文献求助30
18秒前
Noldor应助无所吊谓采纳,获得10
19秒前
落寞臻完成签到,获得积分10
19秒前
20秒前
mzm完成签到,获得积分10
21秒前
21秒前
CipherSage应助虚拟的麦片采纳,获得10
23秒前
25秒前
25秒前
TH发布了新的文献求助10
25秒前
27秒前
29秒前
30秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464