SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images

人工智能 计算机科学 像素 模式识别(心理学) 计算机视觉 嵌入 分割 图像(数学) 匹配(统计) 医学影像学 数学 统计
作者
Ke Yan,Jinzheng Cai,Dakai Jin,Shun Miao,Dazhou Guo,Adam P. Harrison,Youbao Tang,Jing Xiao,Jingjing Lu,Le Lü
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2658-2669 被引量:17
标识
DOI:10.1109/tmi.2022.3169003
摘要

Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戏言121发布了新的文献求助10
1秒前
1秒前
2秒前
优雅的流沙完成签到 ,获得积分10
3秒前
猫的海完成签到,获得积分10
3秒前
3秒前
Eason Liu完成签到,获得积分0
4秒前
Wendy1204完成签到,获得积分20
4秒前
Hello应助654采纳,获得10
4秒前
咩咩羊完成签到,获得积分10
4秒前
8秒前
lianqing完成签到,获得积分10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
RC_Wang应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
hh应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得30
9秒前
9秒前
Leif应助科研通管家采纳,获得20
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
忘羡222发布了新的文献求助20
12秒前
丰富猕猴桃完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
JamesPei应助咿咿呀呀采纳,获得10
13秒前
www完成签到,获得积分10
13秒前
科研通AI2S应助Jenny采纳,获得10
14秒前
limin完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824