SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images

人工智能 计算机科学 像素 模式识别(心理学) 计算机视觉 嵌入 分割 图像(数学) 匹配(统计) 医学影像学 数学 统计
作者
Ke Yan,Jinzheng Cai,Dakai Jin,Shun Miao,Dazhou Guo,Adam P. Harrison,Youbao Tang,Jing Xiao,Jingjing Lu,Le Lü
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2658-2669 被引量:17
标识
DOI:10.1109/tmi.2022.3169003
摘要

Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助鸡腿战神采纳,获得10
2秒前
lemon完成签到 ,获得积分10
2秒前
2秒前
Jorna发布了新的文献求助10
3秒前
西门博超发布了新的文献求助10
3秒前
菜菜一只完成签到,获得积分10
4秒前
4秒前
丁一一完成签到 ,获得积分10
5秒前
空空完成签到,获得积分10
5秒前
5秒前
袁睿韬应助追寻澜采纳,获得10
6秒前
ric发布了新的文献求助10
7秒前
共享精神应助courage采纳,获得10
7秒前
昏睡的蟠桃发布了新的文献求助200
7秒前
吃货发布了新的文献求助10
8秒前
8秒前
追寻的南风完成签到,获得积分10
9秒前
10秒前
hb完成签到,获得积分10
11秒前
WFLLL应助淼漫采纳,获得10
11秒前
传奇3应助noriZHC采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
wanci应助科研通管家采纳,获得10
12秒前
YSJ应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
13秒前
悄然飘去应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
13秒前
彭于晏应助科研通管家采纳,获得30
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
turquoise发布了新的文献求助20
13秒前
云中应助科研通管家采纳,获得20
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352