High-Throughput Deep Unfolding Network for Compressive Sensing MRI

计算机科学 可解释性 压缩传感 水准点(测量) 瓶颈 信息瓶颈法 吞吐量 算法 频道(广播) 人工智能 数学优化 数学 相互信息 计算机网络 大地测量学 嵌入式系统 地理 电信 无线
作者
Jian Zhang,Zhenyu Zhang,Jingfen Xie,Yongbing Zhang
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 750-761 被引量:16
标识
DOI:10.1109/jstsp.2022.3170227
摘要

Deep unfolding network (DUN) has become the mainstream for compressive sensing MRI (CS-MRI) due to its good interpretability and high performance. Different optimization algorithms are usually unfolded into deep networks with different architectures, in which one iteration corresponds to one stage of DUN. However, there are few works discussing the following two questions: Which optimization algorithm is better after being unfolded into a DUN? What are the bottlenecks in existing DUNs? This paper attempts to answer these questions and give a feasible solution. For the first question, our mathematical and empirical analysis verifies the similarity of DUNs unfolded by alternating minimization (AM), alternating iterative shrinkage-thresholding algorithm (ISTA) and alternating direction method of multipliers (ADMM). For the second question, we point out that one major bottleneck of existing DUNs is that the input and output of each stage are just images of one channel, which greatly limits the transmission of network information. To break the information bottleneck, this paper proposes a novel, simple yet powerful high-throughput deep unfolding network (HiTDUN), which is not constrained by any optimization algorithm and can transmit multi-channel information between adjacent network stages. The developed multi-channel fusion strategy can also be easily incorporated into existing DUNs to further boost their performance. Extensive CS-MRI experiments on three benchmark datasets demonstrate that the proposed HiTDUN outperforms existing state-of-the-art DUNs by large margins while maintaining fast computational speed. 1 For reproducible research, the source codes and training models of our HiTDUN. [Online]. Available: https://github.com/jianzhangcs/HiTDUN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的如松完成签到,获得积分0
4秒前
粥可温完成签到,获得积分10
6秒前
曾珍发布了新的文献求助10
7秒前
8秒前
hzh完成签到 ,获得积分10
9秒前
gg发布了新的文献求助10
9秒前
勤劳滑板完成签到 ,获得积分10
9秒前
Jerry完成签到,获得积分10
10秒前
MrLiu完成签到,获得积分10
11秒前
冷傲博完成签到,获得积分10
11秒前
jeff完成签到,获得积分10
11秒前
LHZ完成签到,获得积分10
11秒前
所所应助时尚俊驰采纳,获得10
12秒前
影子芳香完成签到 ,获得积分10
13秒前
14秒前
14秒前
不必要再讨论适合与否完成签到,获得积分0
15秒前
无情夏寒完成签到 ,获得积分10
16秒前
慕青应助马士全采纳,获得10
17秒前
xuzj应助科研通管家采纳,获得10
17秒前
Rubby应助科研通管家采纳,获得30
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
shiizii应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
ludong_0应助科研通管家采纳,获得10
18秒前
YeeYee发布了新的文献求助10
18秒前
冷酷的松思完成签到,获得积分10
18秒前
zgt01发布了新的文献求助10
19秒前
zhang完成签到,获得积分10
19秒前
江中完成签到 ,获得积分10
21秒前
21秒前
阿玖完成签到 ,获得积分10
22秒前
jiaolulu发布了新的文献求助10
24秒前
踏雪飞鸿完成签到,获得积分10
25秒前
hannah完成签到,获得积分10
25秒前
songvv发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022