High-Throughput Deep Unfolding Network for Compressive Sensing MRI

计算机科学 可解释性 压缩传感 水准点(测量) 瓶颈 信息瓶颈法 吞吐量 算法 频道(广播) 人工智能 数学优化 数学 相互信息 计算机网络 大地测量学 嵌入式系统 地理 电信 无线
作者
Jian Zhang,Zhenyu Zhang,Jingfen Xie,Yongbing Zhang
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 750-761 被引量:16
标识
DOI:10.1109/jstsp.2022.3170227
摘要

Deep unfolding network (DUN) has become the mainstream for compressive sensing MRI (CS-MRI) due to its good interpretability and high performance. Different optimization algorithms are usually unfolded into deep networks with different architectures, in which one iteration corresponds to one stage of DUN. However, there are few works discussing the following two questions: Which optimization algorithm is better after being unfolded into a DUN? What are the bottlenecks in existing DUNs? This paper attempts to answer these questions and give a feasible solution. For the first question, our mathematical and empirical analysis verifies the similarity of DUNs unfolded by alternating minimization (AM), alternating iterative shrinkage-thresholding algorithm (ISTA) and alternating direction method of multipliers (ADMM). For the second question, we point out that one major bottleneck of existing DUNs is that the input and output of each stage are just images of one channel, which greatly limits the transmission of network information. To break the information bottleneck, this paper proposes a novel, simple yet powerful high-throughput deep unfolding network (HiTDUN), which is not constrained by any optimization algorithm and can transmit multi-channel information between adjacent network stages. The developed multi-channel fusion strategy can also be easily incorporated into existing DUNs to further boost their performance. Extensive CS-MRI experiments on three benchmark datasets demonstrate that the proposed HiTDUN outperforms existing state-of-the-art DUNs by large margins while maintaining fast computational speed. 1 For reproducible research, the source codes and training models of our HiTDUN. [Online]. Available: https://github.com/jianzhangcs/HiTDUN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分10
2秒前
没有逗应助阿呆采纳,获得10
3秒前
hailiangzheng发布了新的文献求助10
5秒前
阿巴阿巴阿巴完成签到,获得积分10
8秒前
科研通AI2S应助宗语雪采纳,获得10
9秒前
一煽情完成签到,获得积分10
9秒前
10秒前
许多多完成签到,获得积分10
10秒前
搜集达人应助谦让的小姜采纳,获得10
11秒前
yzlsci发布了新的文献求助260
12秒前
13秒前
1989发布了新的文献求助10
15秒前
16秒前
16秒前
小不溜完成签到,获得积分10
16秒前
17秒前
立里完成签到,获得积分10
18秒前
慕青应助阿巴阿巴阿巴采纳,获得10
18秒前
万能图书馆应助LIKO采纳,获得10
19秒前
害羞聋五发布了新的文献求助10
20秒前
852应助Su采纳,获得10
22秒前
小萌完成签到,获得积分10
22秒前
23秒前
大个应助踏实的从寒采纳,获得10
24秒前
GQ完成签到,获得积分10
24秒前
安若完成签到 ,获得积分20
25秒前
25秒前
25秒前
xiaoyu完成签到,获得积分10
26秒前
28秒前
无花果应助白日幻想家采纳,获得10
29秒前
阳佟天川完成签到,获得积分10
29秒前
科目三应助able采纳,获得10
29秒前
30秒前
烟花应助曲夜白采纳,获得10
31秒前
32秒前
北雁发布了新的文献求助10
33秒前
34秒前
35秒前
褚人达完成签到,获得积分10
35秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053