High-Throughput Deep Unfolding Network for Compressive Sensing MRI

计算机科学 可解释性 压缩传感 水准点(测量) 瓶颈 信息瓶颈法 吞吐量 算法 频道(广播) 趋同(经济学) 人工智能 相互信息 计算机网络 经济 大地测量学 嵌入式系统 地理 电信 无线 经济增长
作者
Jian Zhang,Zhenyu Zhang,Jingfen Xie,Yongbing Zhang
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 750-761 被引量:45
标识
DOI:10.1109/jstsp.2022.3170227
摘要

Deep unfolding network (DUN) has become the mainstream for compressive sensing MRI (CS-MRI) due to its good interpretability and high performance. Different optimization algorithms are usually unfolded into deep networks with different architectures, in which one iteration corresponds to one stage of DUN. However, there are few works discussing the following two questions: Which optimization algorithm is better after being unfolded into a DUN? What are the bottlenecks in existing DUNs? This paper attempts to answer these questions and give a feasible solution. For the first question, our mathematical and empirical analysis verifies the similarity of DUNs unfolded by alternating minimization (AM), alternating iterative shrinkage-thresholding algorithm (ISTA) and alternating direction method of multipliers (ADMM). For the second question, we point out that one major bottleneck of existing DUNs is that the input and output of each stage are just images of one channel, which greatly limits the transmission of network information. To break the information bottleneck, this paper proposes a novel, simple yet powerful high-throughput deep unfolding network (HiTDUN), which is not constrained by any optimization algorithm and can transmit multi-channel information between adjacent network stages. The developed multi-channel fusion strategy can also be easily incorporated into existing DUNs to further boost their performance. Extensive CS-MRI experiments on three benchmark datasets demonstrate that the proposed HiTDUN outperforms existing state-of-the-art DUNs by large margins while maintaining fast computational speed. 1 For reproducible research, the source codes and training models of our HiTDUN. [Online]. Available: https://github.com/jianzhangcs/HiTDUN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sochiyuen完成签到,获得积分10
1秒前
Eazin完成签到,获得积分10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
慕青应助小新同学采纳,获得10
4秒前
4秒前
4秒前
潇洒松发布了新的文献求助10
4秒前
5秒前
5秒前
风清扬发布了新的文献求助20
5秒前
6秒前
jerry完成签到,获得积分10
7秒前
李健的小迷弟应助dd采纳,获得10
7秒前
8秒前
8秒前
皓月孤烟完成签到,获得积分10
8秒前
zxyan发布了新的文献求助10
8秒前
sandy完成签到,获得积分10
9秒前
abandon发布了新的文献求助10
9秒前
10秒前
10秒前
xwl发布了新的文献求助10
10秒前
11秒前
xiuru发布了新的文献求助10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Rming完成签到,获得积分10
11秒前
所所应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743323
求助须知:如何正确求助?哪些是违规求助? 5413456
关于积分的说明 15347310
捐赠科研通 4884139
什么是DOI,文献DOI怎么找? 2625595
邀请新用户注册赠送积分活动 1574486
关于科研通互助平台的介绍 1531380