High-Throughput Deep Unfolding Network for Compressive Sensing MRI

计算机科学 可解释性 压缩传感 水准点(测量) 瓶颈 信息瓶颈法 吞吐量 算法 频道(广播) 趋同(经济学) 人工智能 相互信息 计算机网络 经济 大地测量学 嵌入式系统 地理 电信 无线 经济增长
作者
Jian Zhang,Zhenyu Zhang,Jingfen Xie,Yongbing Zhang
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 750-761 被引量:45
标识
DOI:10.1109/jstsp.2022.3170227
摘要

Deep unfolding network (DUN) has become the mainstream for compressive sensing MRI (CS-MRI) due to its good interpretability and high performance. Different optimization algorithms are usually unfolded into deep networks with different architectures, in which one iteration corresponds to one stage of DUN. However, there are few works discussing the following two questions: Which optimization algorithm is better after being unfolded into a DUN? What are the bottlenecks in existing DUNs? This paper attempts to answer these questions and give a feasible solution. For the first question, our mathematical and empirical analysis verifies the similarity of DUNs unfolded by alternating minimization (AM), alternating iterative shrinkage-thresholding algorithm (ISTA) and alternating direction method of multipliers (ADMM). For the second question, we point out that one major bottleneck of existing DUNs is that the input and output of each stage are just images of one channel, which greatly limits the transmission of network information. To break the information bottleneck, this paper proposes a novel, simple yet powerful high-throughput deep unfolding network (HiTDUN), which is not constrained by any optimization algorithm and can transmit multi-channel information between adjacent network stages. The developed multi-channel fusion strategy can also be easily incorporated into existing DUNs to further boost their performance. Extensive CS-MRI experiments on three benchmark datasets demonstrate that the proposed HiTDUN outperforms existing state-of-the-art DUNs by large margins while maintaining fast computational speed. 1 For reproducible research, the source codes and training models of our HiTDUN. [Online]. Available: https://github.com/jianzhangcs/HiTDUN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嘿嘿发布了新的文献求助10
1秒前
2秒前
Wangle发布了新的文献求助10
2秒前
3秒前
pan完成签到,获得积分10
3秒前
3秒前
鱼非非鱼完成签到 ,获得积分10
3秒前
ff发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
老福贵儿应助chun采纳,获得10
6秒前
silk发布了新的文献求助10
7秒前
7秒前
bravo完成签到,获得积分0
7秒前
iris2333发布了新的文献求助10
8秒前
8秒前
可爱的函函应助suzy采纳,获得10
9秒前
机智涵阳完成签到,获得积分10
10秒前
10秒前
鲤鱼凛发布了新的文献求助10
11秒前
科研通AI6应助星河采纳,获得10
11秒前
abrin08发布了新的文献求助10
13秒前
14秒前
共享精神应助Wangle采纳,获得10
14秒前
yaya完成签到,获得积分10
14秒前
14秒前
zzzzz完成签到,获得积分10
15秒前
岚12完成签到 ,获得积分10
15秒前
hongjing发布了新的文献求助10
15秒前
黄则已发布了新的文献求助10
16秒前
江洋大盗发布了新的文献求助10
17秒前
威武寄翠完成签到,获得积分10
18秒前
18秒前
小T完成签到,获得积分10
21秒前
老福贵儿应助核桃小小苏采纳,获得10
21秒前
佳节完成签到,获得积分10
21秒前
无赖真菌发布了新的文献求助10
21秒前
iris2333发布了新的文献求助10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537308
求助须知:如何正确求助?哪些是违规求助? 4624842
关于积分的说明 14593552
捐赠科研通 4565384
什么是DOI,文献DOI怎么找? 2502279
邀请新用户注册赠送积分活动 1480966
关于科研通互助平台的介绍 1452190