High-Throughput Deep Unfolding Network for Compressive Sensing MRI

计算机科学 可解释性 压缩传感 水准点(测量) 瓶颈 信息瓶颈法 吞吐量 算法 频道(广播) 人工智能 数学优化 数学 相互信息 计算机网络 嵌入式系统 电信 地理 无线 大地测量学
作者
Jian Zhang,Zhenyu Zhang,Jingfen Xie,Yongbing Zhang
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 750-761 被引量:16
标识
DOI:10.1109/jstsp.2022.3170227
摘要

Deep unfolding network (DUN) has become the mainstream for compressive sensing MRI (CS-MRI) due to its good interpretability and high performance. Different optimization algorithms are usually unfolded into deep networks with different architectures, in which one iteration corresponds to one stage of DUN. However, there are few works discussing the following two questions: Which optimization algorithm is better after being unfolded into a DUN? What are the bottlenecks in existing DUNs? This paper attempts to answer these questions and give a feasible solution. For the first question, our mathematical and empirical analysis verifies the similarity of DUNs unfolded by alternating minimization (AM), alternating iterative shrinkage-thresholding algorithm (ISTA) and alternating direction method of multipliers (ADMM). For the second question, we point out that one major bottleneck of existing DUNs is that the input and output of each stage are just images of one channel, which greatly limits the transmission of network information. To break the information bottleneck, this paper proposes a novel, simple yet powerful high-throughput deep unfolding network (HiTDUN), which is not constrained by any optimization algorithm and can transmit multi-channel information between adjacent network stages. The developed multi-channel fusion strategy can also be easily incorporated into existing DUNs to further boost their performance. Extensive CS-MRI experiments on three benchmark datasets demonstrate that the proposed HiTDUN outperforms existing state-of-the-art DUNs by large margins while maintaining fast computational speed. 1 For reproducible research, the source codes and training models of our HiTDUN. [Online]. Available: https://github.com/jianzhangcs/HiTDUN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英勇曼冬发布了新的文献求助10
1秒前
Gtpangda发布了新的文献求助10
2秒前
nj发布了新的文献求助10
2秒前
gong发布了新的文献求助10
2秒前
Lucas应助勤恳幻然采纳,获得10
2秒前
英姑应助任伟超采纳,获得10
3秒前
酷波er应助wbz采纳,获得10
3秒前
yy完成签到 ,获得积分10
3秒前
zzq发布了新的文献求助10
4秒前
4秒前
4秒前
希望天下0贩的0应助皮皮采纳,获得10
5秒前
朝三暮四发布了新的文献求助10
5秒前
小杜发布了新的文献求助20
7秒前
kak完成签到,获得积分10
7秒前
10秒前
nj完成签到,获得积分20
10秒前
直率笑槐完成签到,获得积分20
14秒前
15秒前
15秒前
threewei完成签到,获得积分10
17秒前
东方三问应助小雷要学习采纳,获得10
17秒前
17秒前
萧萧应助yeda706采纳,获得10
17秒前
19秒前
我不发布了新的文献求助10
19秒前
ywuuu发布了新的文献求助10
19秒前
笨笨的秋蝶完成签到,获得积分10
21秒前
22秒前
蔡1发布了新的文献求助10
22秒前
王津丹完成签到,获得积分10
22秒前
英俊的铭应助浮浮世世采纳,获得200
22秒前
23秒前
23秒前
鄂老三发布了新的文献求助10
23秒前
24秒前
24秒前
无情的镜子完成签到,获得积分10
24秒前
栾欣怡完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939