Underwater Image Enhancement Quality Evaluation: Benchmark Dataset and Objective Metric

计算机科学 水准点(测量) 水下 公制(单位) 图像质量 人工智能 数据挖掘 模式识别(心理学) 机器学习 图像(数学) 工程类 地图学 运营管理 海洋学 地质学 地理
作者
Qiuping Jiang,Yuese Gu,Chongyi Li,Runmin Cong,Feng Shao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 5959-5974 被引量:145
标识
DOI:10.1109/tcsvt.2022.3164918
摘要

Due to the attenuation and scattering of light by water, there are many quality defects in raw underwater images such as color casts, decreased visibility, reduced contrast, et al. . Many different underwater image enhancement (UIE) algorithms have been proposed to enhance underwater image quality. However, how to fairly compare the performance among UIE algorithms remains a challenging problem. So far, the lack of comprehensive human subjective user study with large-scale benchmark dataset and reliable objective image quality assessment (IQA) metric makes it difficult to fully understand the true performance of UIE algorithms. We in this paper make efforts in both subjective and objective aspects to fill these gaps. Firstly, we construct a new Subjectively-Annotated UIE benchmark Dataset (SAUD) which simultaneously provides real-world raw underwater images, readily available enhanced results by representative UIE algorithms, and subjective ranking scores of each enhanced result. Secondly, we propose an effective No-reference (NR) Underwater Image Quality metric (NUIQ) to automatically evaluate the visual quality of enhanced underwater images. Experiments on the constructed SAUD dataset demonstrate the superiority of our proposed NUIQ metric, achieving higher consistency with subjective rankings than 22 mainstream NR-IQA metrics. The dataset and source code will be made available at https://github.com/yia-yuese/SAUD-Dataset .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
qwe应助诺安成长混合采纳,获得10
4秒前
清秀不言完成签到 ,获得积分10
5秒前
6秒前
8秒前
8秒前
庾天磊完成签到 ,获得积分10
8秒前
哎哟我去发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
13秒前
ACCEPT发布了新的文献求助10
13秒前
13秒前
14秒前
TZMY完成签到,获得积分10
16秒前
Hannibal发布了新的文献求助10
16秒前
16秒前
Joshua完成签到,获得积分0
20秒前
20秒前
20秒前
不许放羊完成签到 ,获得积分10
23秒前
bkagyin应助Jiaowen采纳,获得10
23秒前
星期五发布了新的文献求助10
23秒前
呆萌笑晴发布了新的文献求助10
23秒前
mit完成签到 ,获得积分10
24秒前
25秒前
彭于晏应助欣慰的乌冬面采纳,获得10
26秒前
端木永乐完成签到 ,获得积分10
27秒前
小满完成签到,获得积分10
27秒前
小二郎应助诺安成长混合采纳,获得10
28秒前
29秒前
邢文瑞发布了新的文献求助10
29秒前
29秒前
30秒前
31秒前
31秒前
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579