亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography

计算机断层血管造影 医学 神经组阅片室 计算机断层摄影 介入放射学 放射科 冠状动脉造影 动脉 狭窄 血管造影 心脏病学 计算机断层摄影术 心肌梗塞 神经学 精神科
作者
Yiming Li,Yu Wu,Jingjing He,Weili Jiang,Jianyong Wang,Yong Peng,Yuheng Jia,Tian‐Yuan Xiong,Kaiyu Jia,Yi Zhang,Mao Chen
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (9): 6037-6045 被引量:21
标识
DOI:10.1007/s00330-022-08761-z
摘要

Coronary computed tomography angiography (CCTA) has rapidly developed in the coronary artery disease (CAD) field. However, manual coronary artery tree segmentation and reconstruction are time-consuming and tedious. Deep learning algorithms have been successfully developed for medical image analysis to process extensive data. Thus, we aimed to develop a deep learning tool for automatic coronary artery reconstruction and an automated CAD diagnosis model based on a large, single-centre retrospective CCTA cohort.Automatic CAD diagnosis consists of two subtasks. One is a segmentation task, which aims to extract the region of interest (ROI) from original images with U-Net. The second task is an identification task, which we implemented using 3DNet. The coronary artery tree images and clinical parameters were input into 3DNet, and the CAD diagnosis result was output.We built a coronary artery segmentation model based on CCTA images with the corresponding labelling. The segmentation model had a mean Dice value of 0.771 ± 0.021. Based on this model, we built an automated diagnosis model (classification model) for CAD. The average accuracy and area under the receiver operating characteristic curve (AUC) were 0.750 ± 0.056 and 0.737, respectively.Herein, using a deep learning algorithm, we realized the rapid classification and diagnosis of CAD from CCTA images in two steps. Our deep learning model can automatically segment the coronary artery quickly and accurately and can deliver a diagnosis of ≥ 50% coronary artery stenosis. Artificial intelligence methods such as deep learning have the potential to elevate the efficiency in CCTA image analysis considerably.• The deep learning model rapidly achieved a high Dice value (0.771 ± 0.0210) in the autosegmentation of coronary arteries using CCTA images. • Based on the segmentation model, we built a CAD autoclassifier with the 3DNet algorithm, which achieved a good diagnostic performance (AUC) of 0.737. • The deep neural network could be used in the image postprocessing of coronary computed tomography angiography to achieve a quick and accurate diagnosis of CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
48秒前
dgcyjvfb完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
dgcyjvfb发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Dou发布了新的文献求助10
2分钟前
天天快乐应助Dou采纳,获得10
2分钟前
2分钟前
dgcyjvfb发布了新的文献求助10
2分钟前
2分钟前
伶俐楷瑞完成签到,获得积分10
3分钟前
3分钟前
dgcyjvfb发布了新的文献求助10
3分钟前
我爱高数发布了新的文献求助10
3分钟前
小马甲应助lulubeans采纳,获得10
3分钟前
3分钟前
3分钟前
我爱高数完成签到,获得积分10
3分钟前
小刘恨香菜完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
lulubeans发布了新的文献求助10
3分钟前
lulubeans完成签到,获得积分20
4分钟前
4分钟前
4分钟前
领导范儿应助lulubeans采纳,获得30
4分钟前
自然涵易完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
自然涵易发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
研友_LJajX8发布了新的文献求助10
6分钟前
6分钟前
6分钟前
模糊中正应助luckss采纳,获得10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041151
关于积分的说明 8984007
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697