CPInformer for Efficient and Robust Compound-Protein Interaction Prediction.

计算机科学 判别式 冗余(工程) 图形 可视化 人工智能 特征提取 数据挖掘 特征(语言学) 机器学习 模式识别(心理学)
作者
Yang Hua,Xiao-Ning Song,Zhenhua Feng,Xiao-Jun Wu,Josef Kittler,Dong-Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3144008
摘要

Recently, deep learning has become the mainstream methodology for Compound-Protein Interaction (CPI) prediction. However, the existing compound-protein feature extraction methods have some issues that limit their performance. First, graph networks are widely used for structural compound feature extraction, but the chemical properties of a compound depend on functional groups rather than graphic structure. Besides, the existing methods lack capabilities in extracting rich and discriminative protein features. Last, the compound-protein features are usually simply combined for CPI prediction, without considering information redundancy and effective feature mining. To address the above issues, we propose a novel CPInformer method. Specifically, we extract heterogeneous compound features, including structural graph features and functional class fingerprints, to reduce prediction errors caused by similar structural compounds. Then, we combine local and global features using dense connections to obtain multi-scale protein features. Last, we apply ProbSparse self-attention to protein features, under the guidance of compound features, to eliminate information redundancy, and to improve the accuracy of CPInformer. More importantly, the proposed method identifies the activated local regions that link a CPI, providing a good visualisation for the CPI state. The results obtained on five benchmarks demonstrate the merits and superiority of CPInformer over the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ncwgx完成签到,获得积分10
刚刚
生动千风发布了新的文献求助10
1秒前
搜集达人应助陈思思采纳,获得10
1秒前
Ddddddd发布了新的文献求助10
1秒前
1秒前
小一完成签到,获得积分10
1秒前
司空蓝发布了新的文献求助10
1秒前
youxueting完成签到,获得积分10
3秒前
认真猕猴桃完成签到,获得积分10
4秒前
digger2023发布了新的文献求助10
4秒前
lisa发布了新的文献求助10
4秒前
5秒前
沛蓝完成签到,获得积分10
5秒前
5秒前
han完成签到 ,获得积分10
5秒前
司空蓝完成签到,获得积分10
6秒前
二宝完成签到,获得积分10
6秒前
风清扬发布了新的文献求助10
6秒前
科研通AI5应助重要无招采纳,获得10
6秒前
kk应助失眠颜采纳,获得50
6秒前
魅影仙踪完成签到,获得积分10
7秒前
Jyuanh完成签到,获得积分10
7秒前
Atopos文完成签到,获得积分10
7秒前
aa1212121发布了新的文献求助10
7秒前
36456657应助城南饭饭采纳,获得10
8秒前
pentjy完成签到,获得积分10
8秒前
lin完成签到,获得积分10
9秒前
mesome完成签到,获得积分10
9秒前
9秒前
10秒前
kkkkk发布了新的文献求助10
10秒前
10秒前
11秒前
熠熠发布了新的文献求助10
11秒前
Danny完成签到,获得积分20
11秒前
11秒前
11秒前
Fallen完成签到,获得积分20
12秒前
小汪发布了新的文献求助10
12秒前
风懒懒完成签到,获得积分20
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474464
求助须知:如何正确求助?哪些是违规求助? 3066697
关于积分的说明 9100406
捐赠科研通 2758051
什么是DOI,文献DOI怎么找? 1513292
邀请新用户注册赠送积分活动 699484
科研通“疑难数据库(出版商)”最低求助积分说明 698995