CPInformer for Efficient and Robust Compound-Protein Interaction Prediction.

计算机科学 判别式 冗余(工程) 图形 可视化 人工智能 特征提取 数据挖掘 特征(语言学) 机器学习 模式识别(心理学)
作者
Yang Hua,Xiao-Ning Song,Zhenhua Feng,Xiao-Jun Wu,Josef Kittler,Dong-Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3144008
摘要

Recently, deep learning has become the mainstream methodology for Compound-Protein Interaction (CPI) prediction. However, the existing compound-protein feature extraction methods have some issues that limit their performance. First, graph networks are widely used for structural compound feature extraction, but the chemical properties of a compound depend on functional groups rather than graphic structure. Besides, the existing methods lack capabilities in extracting rich and discriminative protein features. Last, the compound-protein features are usually simply combined for CPI prediction, without considering information redundancy and effective feature mining. To address the above issues, we propose a novel CPInformer method. Specifically, we extract heterogeneous compound features, including structural graph features and functional class fingerprints, to reduce prediction errors caused by similar structural compounds. Then, we combine local and global features using dense connections to obtain multi-scale protein features. Last, we apply ProbSparse self-attention to protein features, under the guidance of compound features, to eliminate information redundancy, and to improve the accuracy of CPInformer. More importantly, the proposed method identifies the activated local regions that link a CPI, providing a good visualisation for the CPI state. The results obtained on five benchmarks demonstrate the merits and superiority of CPInformer over the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
轻雨完成签到 ,获得积分10
2秒前
璐璐发布了新的文献求助10
3秒前
整齐的念波完成签到 ,获得积分10
4秒前
磕盐耇发布了新的文献求助10
5秒前
6秒前
朱欣宇完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
辛勤的喉完成签到,获得积分10
10秒前
12秒前
13秒前
chunhuizhang发布了新的文献求助10
13秒前
13秒前
无私的寄灵完成签到 ,获得积分10
13秒前
宁天问发布了新的文献求助10
14秒前
hhhxxx完成签到,获得积分20
14秒前
14秒前
班小班完成签到,获得积分10
16秒前
16秒前
wanci应助hy采纳,获得10
18秒前
淡淡白枫发布了新的文献求助10
18秒前
zhaoxu完成签到 ,获得积分10
18秒前
fff发布了新的文献求助10
19秒前
KEHUGE发布了新的文献求助10
21秒前
葛栋栋完成签到,获得积分10
21秒前
22秒前
陈欣瑶完成签到 ,获得积分10
22秒前
希望天下0贩的0应助111222采纳,获得10
23秒前
Akim应助kk采纳,获得10
23秒前
24秒前
赘婿应助Kevin采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
25秒前
段盼兰应助科研通管家采纳,获得20
26秒前
Tourist应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
Tourist应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469