亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CPInformer for Efficient and Robust Compound-Protein Interaction Prediction.

计算机科学 判别式 冗余(工程) 图形 可视化 人工智能 特征提取 数据挖掘 特征(语言学) 机器学习 模式识别(心理学)
作者
Yang Hua,Xiao-Ning Song,Zhenhua Feng,Xiao-Jun Wu,Josef Kittler,Dong-Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3144008
摘要

Recently, deep learning has become the mainstream methodology for Compound-Protein Interaction (CPI) prediction. However, the existing compound-protein feature extraction methods have some issues that limit their performance. First, graph networks are widely used for structural compound feature extraction, but the chemical properties of a compound depend on functional groups rather than graphic structure. Besides, the existing methods lack capabilities in extracting rich and discriminative protein features. Last, the compound-protein features are usually simply combined for CPI prediction, without considering information redundancy and effective feature mining. To address the above issues, we propose a novel CPInformer method. Specifically, we extract heterogeneous compound features, including structural graph features and functional class fingerprints, to reduce prediction errors caused by similar structural compounds. Then, we combine local and global features using dense connections to obtain multi-scale protein features. Last, we apply ProbSparse self-attention to protein features, under the guidance of compound features, to eliminate information redundancy, and to improve the accuracy of CPInformer. More importantly, the proposed method identifies the activated local regions that link a CPI, providing a good visualisation for the CPI state. The results obtained on five benchmarks demonstrate the merits and superiority of CPInformer over the state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
23秒前
lifang完成签到 ,获得积分10
23秒前
天天完成签到,获得积分10
27秒前
41秒前
哈哈哈完成签到,获得积分10
59秒前
catherine发布了新的文献求助30
1分钟前
爱笑半莲完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
满意外套完成签到 ,获得积分10
1分钟前
凭什么完成签到,获得积分10
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
天天发布了新的文献求助10
2分钟前
2分钟前
jyy完成签到,获得积分10
2分钟前
3分钟前
学生信的大叔完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Qing完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
从前的我完成签到 ,获得积分10
4分钟前
Wa1Zh0u发布了新的文献求助10
4分钟前
4分钟前
研友_Zb17ln发布了新的文献求助10
4分钟前
null应助研友_Zb17ln采纳,获得10
4分钟前
5分钟前
SDNUDRUG完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402