CPInformer for Efficient and Robust Compound-Protein Interaction Prediction.

计算机科学 判别式 冗余(工程) 图形 可视化 人工智能 特征提取 数据挖掘 特征(语言学) 机器学习 模式识别(心理学)
作者
Yang Hua,Xiao-Ning Song,Zhenhua Feng,Xiao-Jun Wu,Josef Kittler,Dong-Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3144008
摘要

Recently, deep learning has become the mainstream methodology for Compound-Protein Interaction (CPI) prediction. However, the existing compound-protein feature extraction methods have some issues that limit their performance. First, graph networks are widely used for structural compound feature extraction, but the chemical properties of a compound depend on functional groups rather than graphic structure. Besides, the existing methods lack capabilities in extracting rich and discriminative protein features. Last, the compound-protein features are usually simply combined for CPI prediction, without considering information redundancy and effective feature mining. To address the above issues, we propose a novel CPInformer method. Specifically, we extract heterogeneous compound features, including structural graph features and functional class fingerprints, to reduce prediction errors caused by similar structural compounds. Then, we combine local and global features using dense connections to obtain multi-scale protein features. Last, we apply ProbSparse self-attention to protein features, under the guidance of compound features, to eliminate information redundancy, and to improve the accuracy of CPInformer. More importantly, the proposed method identifies the activated local regions that link a CPI, providing a good visualisation for the CPI state. The results obtained on five benchmarks demonstrate the merits and superiority of CPInformer over the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榜一大哥的负担完成签到 ,获得积分10
1秒前
1秒前
思源应助鲤鱼又菡采纳,获得10
3秒前
feiying88发布了新的文献求助10
3秒前
yxx发布了新的文献求助10
3秒前
3秒前
深情傲柔完成签到,获得积分10
4秒前
4秒前
Fishball发布了新的文献求助10
5秒前
生动的鹰完成签到,获得积分10
5秒前
Green完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
SciGPT应助沉静亦寒采纳,获得10
7秒前
Hello应助柔柔采纳,获得10
8秒前
明芬发布了新的文献求助10
8秒前
王子倩发布了新的文献求助10
9秒前
zzz发布了新的文献求助10
9秒前
holland完成签到 ,获得积分10
9秒前
coldspringhao发布了新的文献求助20
10秒前
爹爹发布了新的文献求助10
10秒前
10秒前
深呼吸完成签到,获得积分10
11秒前
12秒前
长乐完成签到,获得积分10
12秒前
14秒前
14秒前
16秒前
远荒完成签到,获得积分20
16秒前
Carry发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
古工楼完成签到,获得积分10
19秒前
20秒前
taozjju完成签到,获得积分10
20秒前
鸭梨完成签到 ,获得积分10
20秒前
明芬完成签到,获得积分10
21秒前
深情安青应助Fishball采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425