A Survey of Visual Transformers

变压器 计算机科学 分割 编码器 人工智能 卷积神经网络 工程类 电气工程 电压 操作系统
作者
Yang Liu,Yao Zhang,Yixin Wang,Feng Hou,Jin Yuan,Jiang Tian,Y.S. Zhang,Zhongchao Shi,Jianping Fan,Zhiqiang He
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21 被引量:110
标识
DOI:10.1109/tnnls.2022.3227717
摘要

Transformer, an attention-based encoder-decoder model, has already revolutionized the field of natural language processing (NLP). Inspired by such significant achievements, some pioneering works have recently been done on employing Transformer-liked architectures in the computer vision (CV) field, which have demonstrated their effectiveness on three fundamental CV tasks (classification, detection, and segmentation) as well as multiple sensory data stream (images, point clouds, and vision-language data). Because of their competitive modeling capabilities, the visual Transformers have achieved impressive performance improvements over multiple benchmarks as compared with modern convolution neural networks (CNNs). In this survey, we have reviewed over 100 of different visual Transformers comprehensively according to three fundamental CV tasks and different data stream types, where taxonomy is proposed to organize the representative methods according to their motivations, structures, and application scenarios. Because of their differences on training settings and dedicated vision tasks, we have also evaluated and compared all these existing visual Transformers under different configurations. Furthermore, we have revealed a series of essential but unexploited aspects that may empower such visual Transformers to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between the visual Transformers and the sequential ones. Finally, two promising research directions are suggested for future investment. We will continue to update the latest articles and their released source codes at https://github.com/liuyang-ict/awesome-visual-transformers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
热情蜜蜂完成签到,获得积分10
2秒前
2秒前
聪慧雪糕发布了新的文献求助10
2秒前
2秒前
2秒前
专注新竹发布了新的文献求助10
2秒前
鼓励男孩发布了新的文献求助10
2秒前
2秒前
懵懂的广缘完成签到 ,获得积分10
3秒前
懵懂的明辉完成签到,获得积分10
3秒前
Muhammad完成签到,获得积分10
3秒前
很酷的妞子完成签到 ,获得积分10
3秒前
旺仔发布了新的文献求助10
3秒前
3秒前
Singularity应助小卢同学采纳,获得10
4秒前
5秒前
郑荻凡发布了新的文献求助10
5秒前
玖熙完成签到,获得积分10
5秒前
lily给lily的求助进行了留言
6秒前
Muhammad发布了新的文献求助10
6秒前
bbj应助DEREK采纳,获得10
6秒前
7秒前
神勇麦片发布了新的文献求助10
7秒前
猫mi发布了新的文献求助10
7秒前
怎奈何发布了新的文献求助10
8秒前
8秒前
豆子发布了新的文献求助10
8秒前
panx发布了新的文献求助10
8秒前
8秒前
Wy完成签到,获得积分10
9秒前
鼓励男孩完成签到,获得积分10
10秒前
zho应助贝肯妮采纳,获得30
10秒前
10秒前
情怀应助聪慧雪糕采纳,获得10
11秒前
Alex发布了新的文献求助10
12秒前
852应助拉长的凌旋采纳,获得10
12秒前
长孙巧凡完成签到,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY (volume 2) 500
Product Class 10: Acridin-9(10H)-ones and Related Systems 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178007
求助须知:如何正确求助?哪些是违规求助? 2828985
关于积分的说明 7969484
捐赠科研通 2490298
什么是DOI,文献DOI怎么找? 1327520
科研通“疑难数据库(出版商)”最低求助积分说明 635256
版权声明 602904