已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Obstacle detection method of unmanned electric locomotive in coal mine based on YOLOv3-4L

障碍物 计算机科学 目标检测 人工智能 磁道(磁盘驱动器) 计算机视觉 模式识别(心理学) 政治学 操作系统 法学
作者
Wenshan Wang,Shuang Wang,Yongcun Guo,Yanqiu Zhao
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (02) 被引量:3
标识
DOI:10.1117/1.jei.31.2.023032
摘要

It is one of the most critical technologies for unmanned electric locomotives to detect the obstacles in front of their operation quickly and accurately, which is of great significance for the safe operation of electric locomotives. Aiming at the problems of current computer vision detection methods, such as error warning, low detection accuracy, and slow detection speed, an obstacle intelligent detection method for unmanned electric locomotives based on an improved YOLOv3 (YOLOv3-4L) algorithm is proposed. The obstacle image data set of the electric locomotive running area is constructed to provide a testing environment for various obstacle detection algorithms. In the network structure, the darknet-53 feature extraction network is simplified, and the four-scale detection structure is formed by adding the shallow layer detection scale to the detection layer, which can improve the detection speed and accuracy of the algorithm for obstacles in front of the locomotive. Distance intersection over union loss function and Focal loss function are adopted to redesign the loss function of the target detector to further improve the detection accuracy of the algorithm. Traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial are used to detect the track lines. By finding the area where the track was located and extending a certain distance to the outside of the track, the dangerous area of electric locomotive running is obtained. The improved YOLOv3 algorithm is utilized to detect obstacles, and only the types and positions of obstacles coincident with dangerous areas are output. The experimental results show that the traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial can detect not only straight track but also curved track, which makes up for the shortcomings of the Hough transforms in detecting curved tracks. Compared with the original YOLOv3 algorithm, the YOLOv3-4L algorithm improves the mean average precision by 5.1%, and the detection speed increases by 7 fps. YOLOv3-4L detection model has high detection accuracy and speed, which can meet the actual working conditions and provide technical reference for unmanned driving of electric locomotives in underground coal mines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刻苦的冬易完成签到 ,获得积分10
3秒前
脑洞疼应助f1mike110采纳,获得10
3秒前
Orange应助超级野狼采纳,获得10
3秒前
4秒前
pay发布了新的文献求助10
6秒前
7秒前
细心怀亦完成签到 ,获得积分10
11秒前
sssyyy发布了新的文献求助10
12秒前
Guts发布了新的文献求助10
12秒前
17秒前
zl13332完成签到 ,获得积分10
19秒前
shy完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
111发布了新的文献求助10
24秒前
24秒前
27秒前
28秒前
马宁婧完成签到 ,获得积分10
31秒前
柠木完成签到 ,获得积分10
33秒前
Dr.c发布了新的文献求助10
35秒前
36秒前
小明完成签到,获得积分10
37秒前
Airsjz发布了新的文献求助10
42秒前
42秒前
Jemma完成签到 ,获得积分10
43秒前
轨迹应助小彬采纳,获得10
44秒前
Guts发布了新的文献求助10
45秒前
46秒前
DD发布了新的文献求助10
46秒前
zp19877891完成签到,获得积分10
47秒前
毛舒敏完成签到 ,获得积分10
49秒前
Aris发布了新的文献求助30
50秒前
不许动完成签到 ,获得积分10
50秒前
爆米花应助研究牲采纳,获得10
53秒前
小刘完成签到,获得积分10
54秒前
科研通AI6.1应助Guts采纳,获得10
55秒前
武愿完成签到 ,获得积分10
55秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387