Obstacle detection method of unmanned electric locomotive in coal mine based on YOLOv3-4L

障碍物 计算机科学 目标检测 人工智能 磁道(磁盘驱动器) 计算机视觉 模式识别(心理学) 政治学 操作系统 法学
作者
Wenshan Wang,Shuang Wang,Yongcun Guo,Yanqiu Zhao
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (02) 被引量:3
标识
DOI:10.1117/1.jei.31.2.023032
摘要

It is one of the most critical technologies for unmanned electric locomotives to detect the obstacles in front of their operation quickly and accurately, which is of great significance for the safe operation of electric locomotives. Aiming at the problems of current computer vision detection methods, such as error warning, low detection accuracy, and slow detection speed, an obstacle intelligent detection method for unmanned electric locomotives based on an improved YOLOv3 (YOLOv3-4L) algorithm is proposed. The obstacle image data set of the electric locomotive running area is constructed to provide a testing environment for various obstacle detection algorithms. In the network structure, the darknet-53 feature extraction network is simplified, and the four-scale detection structure is formed by adding the shallow layer detection scale to the detection layer, which can improve the detection speed and accuracy of the algorithm for obstacles in front of the locomotive. Distance intersection over union loss function and Focal loss function are adopted to redesign the loss function of the target detector to further improve the detection accuracy of the algorithm. Traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial are used to detect the track lines. By finding the area where the track was located and extending a certain distance to the outside of the track, the dangerous area of electric locomotive running is obtained. The improved YOLOv3 algorithm is utilized to detect obstacles, and only the types and positions of obstacles coincident with dangerous areas are output. The experimental results show that the traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial can detect not only straight track but also curved track, which makes up for the shortcomings of the Hough transforms in detecting curved tracks. Compared with the original YOLOv3 algorithm, the YOLOv3-4L algorithm improves the mean average precision by 5.1%, and the detection speed increases by 7 fps. YOLOv3-4L detection model has high detection accuracy and speed, which can meet the actual working conditions and provide technical reference for unmanned driving of electric locomotives in underground coal mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
600完成签到 ,获得积分10
刚刚
邓钰洁完成签到,获得积分10
刚刚
ding应助高新慧采纳,获得10
1秒前
vander完成签到,获得积分10
2秒前
2秒前
2秒前
WWW发布了新的文献求助10
2秒前
xyg完成签到,获得积分10
3秒前
22222发布了新的文献求助10
3秒前
宋立完成签到,获得积分10
3秒前
友好听云发布了新的文献求助10
3秒前
大胆的茗茗完成签到,获得积分10
4秒前
12发布了新的文献求助10
4秒前
4秒前
en完成签到,获得积分10
4秒前
MM发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
星辰大海应助路过你的夏采纳,获得30
5秒前
aaaaa小柴发布了新的文献求助10
5秒前
思源应助独特的豌豆采纳,获得10
5秒前
6秒前
liutaili完成签到,获得积分10
6秒前
林一发布了新的文献求助10
6秒前
优美的谷完成签到,获得积分10
6秒前
科研通AI5应助Revovler采纳,获得10
7秒前
闪闪大楚完成签到,获得积分10
7秒前
小熊猫完成签到,获得积分10
8秒前
研友_VZG7GZ应助r41r32采纳,获得10
8秒前
8秒前
fanmo完成签到 ,获得积分0
9秒前
泯珉发布了新的文献求助10
9秒前
9秒前
Golden发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
印染发布了新的文献求助20
10秒前
斯文败类应助Cheng采纳,获得10
10秒前
安详晓亦发布了新的文献求助10
10秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589809
求助须知:如何正确求助?哪些是违规求助? 4004879
关于积分的说明 12399383
捐赠科研通 3681829
什么是DOI,文献DOI怎么找? 2029331
邀请新用户注册赠送积分活动 1062867
科研通“疑难数据库(出版商)”最低求助积分说明 948516