Obstacle detection method of unmanned electric locomotive in coal mine based on YOLOv3-4L

障碍物 计算机科学 目标检测 人工智能 磁道(磁盘驱动器) 计算机视觉 模式识别(心理学) 政治学 操作系统 法学
作者
Wenshan Wang,Shuang Wang,Yongcun Guo,Yanqiu Zhao
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (02) 被引量:3
标识
DOI:10.1117/1.jei.31.2.023032
摘要

It is one of the most critical technologies for unmanned electric locomotives to detect the obstacles in front of their operation quickly and accurately, which is of great significance for the safe operation of electric locomotives. Aiming at the problems of current computer vision detection methods, such as error warning, low detection accuracy, and slow detection speed, an obstacle intelligent detection method for unmanned electric locomotives based on an improved YOLOv3 (YOLOv3-4L) algorithm is proposed. The obstacle image data set of the electric locomotive running area is constructed to provide a testing environment for various obstacle detection algorithms. In the network structure, the darknet-53 feature extraction network is simplified, and the four-scale detection structure is formed by adding the shallow layer detection scale to the detection layer, which can improve the detection speed and accuracy of the algorithm for obstacles in front of the locomotive. Distance intersection over union loss function and Focal loss function are adopted to redesign the loss function of the target detector to further improve the detection accuracy of the algorithm. Traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial are used to detect the track lines. By finding the area where the track was located and extending a certain distance to the outside of the track, the dangerous area of electric locomotive running is obtained. The improved YOLOv3 algorithm is utilized to detect obstacles, and only the types and positions of obstacles coincident with dangerous areas are output. The experimental results show that the traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial can detect not only straight track but also curved track, which makes up for the shortcomings of the Hough transforms in detecting curved tracks. Compared with the original YOLOv3 algorithm, the YOLOv3-4L algorithm improves the mean average precision by 5.1%, and the detection speed increases by 7 fps. YOLOv3-4L detection model has high detection accuracy and speed, which can meet the actual working conditions and provide technical reference for unmanned driving of electric locomotives in underground coal mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助暮色采纳,获得10
刚刚
万能图书馆应助raoxray采纳,获得30
2秒前
2秒前
阿乐发布了新的文献求助10
3秒前
季秋完成签到,获得积分10
4秒前
muadqwq完成签到,获得积分10
4秒前
xinqisusu发布了新的文献求助10
4秒前
英俊的铭应助Serein采纳,获得10
6秒前
早早完成签到,获得积分10
6秒前
科研小白发布了新的文献求助10
6秒前
婷糖发布了新的文献求助10
7秒前
7秒前
知更发布了新的文献求助10
7秒前
8秒前
8秒前
勤劳的小牛蛙应助Rita采纳,获得10
11秒前
桐桐应助安详的韩庆采纳,获得10
11秒前
白衣轻叹发布了新的文献求助10
12秒前
syl完成签到,获得积分10
12秒前
未晞发布了新的文献求助10
12秒前
冷静幻枫发布了新的文献求助10
12秒前
一苇以航发布了新的文献求助200
13秒前
xin完成签到,获得积分20
13秒前
14秒前
14秒前
15秒前
16秒前
善学以致用应助www采纳,获得10
16秒前
充电宝应助咕咕采纳,获得10
16秒前
shero完成签到 ,获得积分10
16秒前
脑洞疼应助NSGB采纳,获得10
17秒前
17秒前
20秒前
xin发布了新的文献求助10
20秒前
菜菜泽发布了新的文献求助10
20秒前
23秒前
24秒前
SciGPT应助快中文章啊采纳,获得10
25秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952902
求助须知:如何正确求助?哪些是违规求助? 3498332
关于积分的说明 11091532
捐赠科研通 3228969
什么是DOI,文献DOI怎么找? 1785163
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377