Obstacle detection method of unmanned electric locomotive in coal mine based on YOLOv3-4L

障碍物 计算机科学 目标检测 人工智能 磁道(磁盘驱动器) 计算机视觉 模式识别(心理学) 政治学 操作系统 法学
作者
Wenshan Wang,Shuang Wang,Yongcun Guo,Yanqiu Zhao
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (02) 被引量:3
标识
DOI:10.1117/1.jei.31.2.023032
摘要

It is one of the most critical technologies for unmanned electric locomotives to detect the obstacles in front of their operation quickly and accurately, which is of great significance for the safe operation of electric locomotives. Aiming at the problems of current computer vision detection methods, such as error warning, low detection accuracy, and slow detection speed, an obstacle intelligent detection method for unmanned electric locomotives based on an improved YOLOv3 (YOLOv3-4L) algorithm is proposed. The obstacle image data set of the electric locomotive running area is constructed to provide a testing environment for various obstacle detection algorithms. In the network structure, the darknet-53 feature extraction network is simplified, and the four-scale detection structure is formed by adding the shallow layer detection scale to the detection layer, which can improve the detection speed and accuracy of the algorithm for obstacles in front of the locomotive. Distance intersection over union loss function and Focal loss function are adopted to redesign the loss function of the target detector to further improve the detection accuracy of the algorithm. Traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial are used to detect the track lines. By finding the area where the track was located and extending a certain distance to the outside of the track, the dangerous area of electric locomotive running is obtained. The improved YOLOv3 algorithm is utilized to detect obstacles, and only the types and positions of obstacles coincident with dangerous areas are output. The experimental results show that the traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial can detect not only straight track but also curved track, which makes up for the shortcomings of the Hough transforms in detecting curved tracks. Compared with the original YOLOv3 algorithm, the YOLOv3-4L algorithm improves the mean average precision by 5.1%, and the detection speed increases by 7 fps. YOLOv3-4L detection model has high detection accuracy and speed, which can meet the actual working conditions and provide technical reference for unmanned driving of electric locomotives in underground coal mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助sweetbear采纳,获得10
刚刚
CC发布了新的文献求助10
1秒前
bkagyin应助xxg采纳,获得10
2秒前
等待洙发布了新的文献求助10
3秒前
zhangyulong完成签到,获得积分20
3秒前
辛勤俊驰完成签到,获得积分10
3秒前
要开心完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助lmwnb采纳,获得10
4秒前
大个应助追寻思雁采纳,获得10
4秒前
大哼哼完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
落无痕完成签到,获得积分20
5秒前
6秒前
人123456完成签到,获得积分10
6秒前
wxf完成签到,获得积分10
6秒前
lsh应助wanzhen采纳,获得10
7秒前
bing发布了新的文献求助10
8秒前
zhshyhy完成签到,获得积分10
9秒前
9秒前
apollo3232完成签到,获得积分10
9秒前
雄图完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
duf完成签到 ,获得积分10
9秒前
计算小凡完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
港港完成签到 ,获得积分10
10秒前
CC完成签到,获得积分10
11秒前
周海青发布了新的文献求助10
11秒前
11秒前
12秒前
左丘不评完成签到 ,获得积分0
12秒前
潇洒毛发布了新的文献求助10
12秒前
顺心飞雪完成签到,获得积分10
12秒前
bigpluto完成签到,获得积分10
13秒前
阔达的无剑完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384