Obstacle detection method of unmanned electric locomotive in coal mine based on YOLOv3-4L

障碍物 计算机科学 目标检测 人工智能 磁道(磁盘驱动器) 计算机视觉 模式识别(心理学) 政治学 操作系统 法学
作者
Wenshan Wang,Shuang Wang,Yongcun Guo,Yanqiu Zhao
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (02) 被引量:3
标识
DOI:10.1117/1.jei.31.2.023032
摘要

It is one of the most critical technologies for unmanned electric locomotives to detect the obstacles in front of their operation quickly and accurately, which is of great significance for the safe operation of electric locomotives. Aiming at the problems of current computer vision detection methods, such as error warning, low detection accuracy, and slow detection speed, an obstacle intelligent detection method for unmanned electric locomotives based on an improved YOLOv3 (YOLOv3-4L) algorithm is proposed. The obstacle image data set of the electric locomotive running area is constructed to provide a testing environment for various obstacle detection algorithms. In the network structure, the darknet-53 feature extraction network is simplified, and the four-scale detection structure is formed by adding the shallow layer detection scale to the detection layer, which can improve the detection speed and accuracy of the algorithm for obstacles in front of the locomotive. Distance intersection over union loss function and Focal loss function are adopted to redesign the loss function of the target detector to further improve the detection accuracy of the algorithm. Traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial are used to detect the track lines. By finding the area where the track was located and extending a certain distance to the outside of the track, the dangerous area of electric locomotive running is obtained. The improved YOLOv3 algorithm is utilized to detect obstacles, and only the types and positions of obstacles coincident with dangerous areas are output. The experimental results show that the traditional computer vision techniques such as perspective transformation, sliding window, and least square cubic polynomial can detect not only straight track but also curved track, which makes up for the shortcomings of the Hough transforms in detecting curved tracks. Compared with the original YOLOv3 algorithm, the YOLOv3-4L algorithm improves the mean average precision by 5.1%, and the detection speed increases by 7 fps. YOLOv3-4L detection model has high detection accuracy and speed, which can meet the actual working conditions and provide technical reference for unmanned driving of electric locomotives in underground coal mines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwj完成签到 ,获得积分10
1秒前
张铁柱完成签到,获得积分10
1秒前
听寒完成签到,获得积分10
4秒前
酷酷的听莲完成签到 ,获得积分10
6秒前
boymin2015完成签到 ,获得积分10
8秒前
12秒前
端庄的凌旋完成签到,获得积分10
12秒前
长柏完成签到 ,获得积分10
15秒前
医学耗材完成签到 ,获得积分10
15秒前
mickaqi完成签到 ,获得积分10
17秒前
小瑄发布了新的文献求助10
17秒前
TUTU完成签到 ,获得积分10
18秒前
伶俐书蝶完成签到 ,获得积分10
23秒前
俊逸的香萱完成签到 ,获得积分10
25秒前
ghost202完成签到,获得积分10
26秒前
刚子完成签到 ,获得积分10
26秒前
lizi完成签到,获得积分10
27秒前
28秒前
courage完成签到 ,获得积分10
29秒前
30秒前
zhangyx完成签到 ,获得积分0
30秒前
保持理智完成签到,获得积分10
31秒前
杨柳9203发布了新的文献求助10
35秒前
不爱吃鱼的猫完成签到,获得积分10
40秒前
bleach完成签到 ,获得积分10
42秒前
蒜蒜完成签到,获得积分10
43秒前
FL完成签到 ,获得积分10
47秒前
lwroche完成签到,获得积分10
52秒前
xj_yjl完成签到,获得积分10
59秒前
笨笨书芹完成签到 ,获得积分10
1分钟前
dejavu完成签到,获得积分10
1分钟前
fanlin完成签到,获得积分0
1分钟前
萌萌完成签到 ,获得积分10
1分钟前
suisuinian完成签到,获得积分10
1分钟前
海茵完成签到,获得积分10
1分钟前
John完成签到 ,获得积分10
1分钟前
看文献完成签到,获得积分10
1分钟前
bing完成签到,获得积分10
1分钟前
机智的瑀完成签到 ,获得积分10
1分钟前
殷勤的紫槐应助Orochimaru采纳,获得200
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568349
求助须知:如何正确求助?哪些是违规求助? 4652840
关于积分的说明 14702135
捐赠科研通 4594664
什么是DOI,文献DOI怎么找? 2521188
邀请新用户注册赠送积分活动 1492928
关于科研通互助平台的介绍 1463734