过度拟合
磁共振成像
人工智能
卷积神经网络
矢状面
深度学习
计算机科学
流离失所(心理学)
机器学习
人工神经网络
模式识别(心理学)
医学
放射科
心理学
心理治疗师
作者
Yeon‐Hee Lee,Jong Hyun Won,Seunghyeon Kim,Q‐Schick Auh,Yung‐Kyun Noh
标识
DOI:10.1038/s41598-022-15231-5
摘要
This study investigated the usefulness of deep learning-based automatic detection of anterior disc displacement (ADD) from magnetic resonance imaging (MRI) of patients with temporomandibular joint disorder (TMD). Sagittal MRI images of 2520 TMJs were collected from 861 men and 399 women (average age 37.33 ± 18.83 years). A deep learning algorithm with a convolutional neural network was developed. Data augmentation and the Adam optimizer were applied to reduce the risk of overfitting the deep-learning model. The prediction performances were compared between the models and human experts based on areas under the curve (AUCs). The fine-tuning model showed excellent prediction performance (AUC = 0.8775) and acceptable accuracy (approximately 77%). Comparing the AUC values of the from-scratch (0.8269) and freeze models (0.5858) showed lower performances of the other models compared to the fine-tuning model. In Grad-CAM visualizations, the fine-tuning scheme focused more on the TMJ disc when judging ADD, and the sparsity was higher than that of the from-scratch scheme (84.69% vs. 55.61%, p < 0.05). The three fine-tuned ensemble models using different data augmentation techniques showed a prediction accuracy of 83%. Moreover, the AUC values of ADD were higher when patients with TMD were divided by age (0.8549-0.9275) and sex (male: 0.8483, female: 0.9276). While the accuracy of the ensemble model was higher than that of human experts, the difference was not significant (p = 0.1987-0.0671). Learning from pre-trained weights allowed the fine-tuning model to outperform the from-scratch model. Another benefit of the fine-tuning model for diagnosing ADD of TMJ in Grad-CAM analysis was the deactivation of unwanted gradient values to provide clearer visualizations compared to the from-scratch model. The Grad-CAM visualizations also agreed with the model learned through important features in the joint disc area. The accuracy was further improved by an ensemble of three fine-tuning models using diversified data. The main benefits of this model were the higher specificity compared to human experts, which may be useful for preventing true negative cases, and the maintenance of its prediction accuracy across sexes and ages, suggesting a generalized prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI