亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advantages of deep learning with convolutional neural network in detecting disc displacement of the temporomandibular joint in magnetic resonance imaging

过度拟合 磁共振成像 人工智能 卷积神经网络 矢状面 深度学习 计算机科学 流离失所(心理学) 机器学习 人工神经网络 模式识别(心理学) 医学 放射科 心理学 心理治疗师
作者
Yeon‐Hee Lee,Jong Hyun Won,Seunghyeon Kim,Q‐Schick Auh,Yung‐Kyun Noh
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:27
标识
DOI:10.1038/s41598-022-15231-5
摘要

This study investigated the usefulness of deep learning-based automatic detection of anterior disc displacement (ADD) from magnetic resonance imaging (MRI) of patients with temporomandibular joint disorder (TMD). Sagittal MRI images of 2520 TMJs were collected from 861 men and 399 women (average age 37.33 ± 18.83 years). A deep learning algorithm with a convolutional neural network was developed. Data augmentation and the Adam optimizer were applied to reduce the risk of overfitting the deep-learning model. The prediction performances were compared between the models and human experts based on areas under the curve (AUCs). The fine-tuning model showed excellent prediction performance (AUC = 0.8775) and acceptable accuracy (approximately 77%). Comparing the AUC values of the from-scratch (0.8269) and freeze models (0.5858) showed lower performances of the other models compared to the fine-tuning model. In Grad-CAM visualizations, the fine-tuning scheme focused more on the TMJ disc when judging ADD, and the sparsity was higher than that of the from-scratch scheme (84.69% vs. 55.61%, p < 0.05). The three fine-tuned ensemble models using different data augmentation techniques showed a prediction accuracy of 83%. Moreover, the AUC values of ADD were higher when patients with TMD were divided by age (0.8549-0.9275) and sex (male: 0.8483, female: 0.9276). While the accuracy of the ensemble model was higher than that of human experts, the difference was not significant (p = 0.1987-0.0671). Learning from pre-trained weights allowed the fine-tuning model to outperform the from-scratch model. Another benefit of the fine-tuning model for diagnosing ADD of TMJ in Grad-CAM analysis was the deactivation of unwanted gradient values to provide clearer visualizations compared to the from-scratch model. The Grad-CAM visualizations also agreed with the model learned through important features in the joint disc area. The accuracy was further improved by an ensemble of three fine-tuning models using diversified data. The main benefits of this model were the higher specificity compared to human experts, which may be useful for preventing true negative cases, and the maintenance of its prediction accuracy across sexes and ages, suggesting a generalized prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqq完成签到,获得积分10
3秒前
阿尼亚发布了新的文献求助10
8秒前
xlong完成签到,获得积分10
48秒前
oleskarabach完成签到,获得积分20
1分钟前
CY完成签到,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
hiaoyi完成签到 ,获得积分0
2分钟前
2分钟前
范玉平完成签到,获得积分10
2分钟前
janice完成签到,获得积分10
2分钟前
小石头发布了新的文献求助10
2分钟前
豆乳米麻薯完成签到,获得积分10
2分钟前
小石头完成签到,获得积分20
2分钟前
lbjcp3发布了新的文献求助10
2分钟前
3分钟前
华仔应助lbjcp3采纳,获得10
3分钟前
3分钟前
松子发布了新的文献求助10
3分钟前
fleeper发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Akim应助fleeper采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
fleeper完成签到,获得积分10
3分钟前
大傻春完成签到 ,获得积分10
3分钟前
4分钟前
remohu完成签到,获得积分10
4分钟前
单薄的惜寒完成签到,获得积分20
4分钟前
4分钟前
大傻春发布了新的文献求助10
4分钟前
LL发布了新的文献求助30
4分钟前
Strive发布了新的文献求助150
4分钟前
4分钟前
4分钟前
闪闪的谷梦完成签到 ,获得积分10
4分钟前
lbjcp3发布了新的文献求助10
4分钟前
芳华如梦完成签到 ,获得积分10
4分钟前
Strive完成签到,获得积分10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795187
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301468
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146