Advantages of deep learning with convolutional neural network in detecting disc displacement of the temporomandibular joint in magnetic resonance imaging

过度拟合 磁共振成像 人工智能 卷积神经网络 矢状面 深度学习 计算机科学 流离失所(心理学) 机器学习 人工神经网络 模式识别(心理学) 医学 放射科 心理学 心理治疗师
作者
Yeon‐Hee Lee,Jong Hyun Won,Seunghyeon Kim,Q‐Schick Auh,Yung‐Kyun Noh
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:27
标识
DOI:10.1038/s41598-022-15231-5
摘要

This study investigated the usefulness of deep learning-based automatic detection of anterior disc displacement (ADD) from magnetic resonance imaging (MRI) of patients with temporomandibular joint disorder (TMD). Sagittal MRI images of 2520 TMJs were collected from 861 men and 399 women (average age 37.33 ± 18.83 years). A deep learning algorithm with a convolutional neural network was developed. Data augmentation and the Adam optimizer were applied to reduce the risk of overfitting the deep-learning model. The prediction performances were compared between the models and human experts based on areas under the curve (AUCs). The fine-tuning model showed excellent prediction performance (AUC = 0.8775) and acceptable accuracy (approximately 77%). Comparing the AUC values of the from-scratch (0.8269) and freeze models (0.5858) showed lower performances of the other models compared to the fine-tuning model. In Grad-CAM visualizations, the fine-tuning scheme focused more on the TMJ disc when judging ADD, and the sparsity was higher than that of the from-scratch scheme (84.69% vs. 55.61%, p < 0.05). The three fine-tuned ensemble models using different data augmentation techniques showed a prediction accuracy of 83%. Moreover, the AUC values of ADD were higher when patients with TMD were divided by age (0.8549-0.9275) and sex (male: 0.8483, female: 0.9276). While the accuracy of the ensemble model was higher than that of human experts, the difference was not significant (p = 0.1987-0.0671). Learning from pre-trained weights allowed the fine-tuning model to outperform the from-scratch model. Another benefit of the fine-tuning model for diagnosing ADD of TMJ in Grad-CAM analysis was the deactivation of unwanted gradient values to provide clearer visualizations compared to the from-scratch model. The Grad-CAM visualizations also agreed with the model learned through important features in the joint disc area. The accuracy was further improved by an ensemble of three fine-tuning models using diversified data. The main benefits of this model were the higher specificity compared to human experts, which may be useful for preventing true negative cases, and the maintenance of its prediction accuracy across sexes and ages, suggesting a generalized prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
如意小丸子关注了科研通微信公众号
3秒前
chunyeliangchuan完成签到,获得积分10
3秒前
4秒前
4秒前
雪er~完成签到,获得积分10
4秒前
小二郎应助单薄店员采纳,获得10
5秒前
LBQ完成签到,获得积分10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
生动路人应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
虚幻的亦旋完成签到,获得积分10
6秒前
ccc发布了新的文献求助10
7秒前
8秒前
卿云发布了新的文献求助10
9秒前
葱油饼完成签到,获得积分10
10秒前
Alex发布了新的文献求助10
10秒前
罗梦芬发布了新的文献求助20
11秒前
SYLH应助PANDA采纳,获得10
11秒前
11秒前
机智乐菱完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
小二郎应助sssssssoda采纳,获得10
12秒前
12秒前
开朗黑猫完成签到,获得积分10
12秒前
喜欢汪的猫完成签到,获得积分20
13秒前
ccc完成签到,获得积分10
15秒前
15秒前
SYLH应助喜欢汪的猫采纳,获得30
17秒前
18秒前
雪er~发布了新的文献求助10
18秒前
哈哈哈完成签到,获得积分10
19秒前
香蕉觅云应助daguan采纳,获得10
19秒前
NexusExplorer应助ares-gxd采纳,获得10
19秒前
所所应助刘莅采纳,获得10
20秒前
21秒前
卿云完成签到,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010191
求助须知:如何正确求助?哪些是违规求助? 3550174
关于积分的说明 11305110
捐赠科研通 3284653
什么是DOI,文献DOI怎么找? 1810748
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451