苦荞
生物
基因
荞麦属
系统发育树
非生物胁迫
氨基酸
遗传学
非生物成分
植物
生物化学
古生物学
芦丁
抗氧化剂
作者
Yang Yang,Xinfang Wang,Jie Zheng,Yihan Men,Yijuan Zhang,Longlong Liu,Yuanhuai Han,Siyu Hou,Zhaoxia Sun
标识
DOI:10.1016/j.ijbiomac.2022.07.059
摘要
Tartary buckwheat (Fagopyrum tataricum L. Gaertn., TB) is an ancient minor crop and an important food source for humans to supplement nutrients such as flavonoids and essential amino acids. Amino acid transporters (AATs) play critical roles in plant growth and development through the transport of amino acids. In this study, 104 AATs were identified in TB genome and divided into 11 subfamilies by phylogenetic relationships. Tandem and segmental duplications promoted the expansion of FtAAT gene family, and the variations of gene sequence, protein structure and expression pattern were the main reasons for the functional differentiation of FtAATs. Based on RNA-seq and qRT-PCR, the expression patterns of FtAATs in different tissues and under different abiotic stresses were analyzed, and several candidate FtAATs that might affect grain development and response to abiotic stresses were identified, such as FtAAP12 and FtCAT7. Finally, combined with the previous studies, the expression patterns and phylogenetic relationships of AATs in multiple species, the functions of multiple high-confidence FtAAT genes were predicted, and the schematic diagram of FtAATs in TB was initially drawn. Overall, this work provided a framework for further functional analysis of FtAAT genes and important clues for the improvement of TB quality and stress resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI