亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum Collective Learning and Many-to-Many Matching Game in the Metaverse for Connected and Autonomous Vehicles

强化学习 计算机科学 过程(计算) 匹配(统计) 集体智慧 马尔可夫决策过程 人工智能 分布式计算 马尔可夫过程 统计 数学 操作系统
作者
Ren Yuzheng,Renchao Xie,F. Richard Yu,Tao Huang,Yunjie Liu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (11): 12128-12139
标识
DOI:10.1109/tvt.2022.3190271
摘要

The accuracy of artificial intelligence (AI) models is crucial for connected and autonomous vehicles (CAVs). However, in reality, model training under less frequent weather faces the problem of insufficient sampling. Also, in the real world, weather, sunlight, etc., can only change with the speed of the real-time clock, so the traditional sampling process is very slow. Moreover, currently, collective learning, which can make up the limited experience and computing power of a single vehicle, is always introduced to cases where the data from participants have the same structure, wasting massive heterogeneous data from vehicles of different brands. Therefore, in this paper, we propose a quantum collective learning and many-to-many matching game-based scheme in the metaverse for CAVs. The environment is simulated in the metaverse, which has its own time clock system, thereby expanding sample size and speeding up the sampling process. And we quantify the quality of intelligence in collective learning from the perspective of feature diversity. It is the cornerstone of collective learning between heterogeneous vehicles, facilitating maximum utilization of data with different structures. Then, we formulate the distributed vehicles selection problem as a many-to-many matching game and use Gale–Shapely algorithm to solve it. Also, we formulate the spectrum resource allocation problem as a discrete Markov decision process (MDP) and adopt a quantum-inspired reinforcement learning (QRL) algorithm to find the optimal policy to achieve the high revenue of the system. In simulations, the performance of the proposed scheme is compared with existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqq完成签到,获得积分10
15秒前
58秒前
HOVER发布了新的文献求助10
1分钟前
joanna完成签到,获得积分10
1分钟前
HOVER完成签到 ,获得积分20
1分钟前
jyy发布了新的文献求助30
1分钟前
高速旋转老沁完成签到 ,获得积分10
1分钟前
莎莎来了完成签到,获得积分10
2分钟前
科研通AI5应助玄同采纳,获得10
2分钟前
2分钟前
2分钟前
太空工程师完成签到,获得积分10
2分钟前
黄沙漠完成签到 ,获得积分10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助Shika采纳,获得10
3分钟前
3分钟前
3分钟前
zulpiye发布了新的文献求助10
3分钟前
3分钟前
精灵夜雨发布了新的文献求助10
3分钟前
zulpiye完成签到,获得积分10
3分钟前
科研通AI2S应助Shika采纳,获得10
3分钟前
wyq完成签到 ,获得积分10
3分钟前
小蘑菇应助hywang采纳,获得10
4分钟前
彭于晏应助TEN采纳,获得10
4分钟前
研友_ZG4ml8完成签到 ,获得积分10
4分钟前
今后应助精灵夜雨采纳,获得10
4分钟前
Nancy完成签到,获得积分10
4分钟前
5分钟前
5分钟前
carl发布了新的文献求助10
5分钟前
万默完成签到 ,获得积分10
5分钟前
5分钟前
KDS发布了新的文献求助10
5分钟前
DrJiang完成签到,获得积分10
5分钟前
5分钟前
在水一方应助KDS采纳,获得10
5分钟前
5分钟前
5分钟前
hywang完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555748
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390876
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715803