Deep‐Learning‐Based Microscopic Imagery Classification, Segmentation, and Detection for the Identification of 2D Semiconductors

人工智能 计算机科学 深度学习 卷积神经网络 RGB颜色模型 稳健性(进化) 分割 模式识别(心理学) 支持向量机 计算机视觉 化学 生物化学 基因
作者
Xingchen Dong,Hongwei Li,Yuntian Yan,Haoran Cheng,Hui Xin Zhang,Yucheng Zhang,Tien Dat Le,Kun Wang,Jie Dong,Martin Jakobi,Ali K. Yetisen,Alexander W. Koch
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:5 (9) 被引量:8
标识
DOI:10.1002/adts.202200140
摘要

Abstract 2D materials and their heterostructures are prominent for fabricating next‐generation optical and photonic devices. The optical, electrical, and mechanical properties of 2D materials largely depend on atomic layer numbers. Although machine learning techniques are implemented to identify large‐area thickness distribution using microscopic images, the existing work mainly focuses on rough identification of thicknesses with in‐house datasets which limits fair and comprehensive comparisons of new machine learning approaches. Here, first a microscopic dataset is collected and released for three fundamental image processing tasks including multilabel classification, segmentation, and detection. Then three deep‐learning architectures DenseNet , U‐Net , and Mask‐region convolutional neural network (RCNN) are benchmarked on three tasks and their robustness is evaluated on the augmented 2D microscopic images with different optical contrast variations. Deep learning models are trained and evaluated to identify mono‐, bi‐, tri‐, multilayer and bulk flakes using microscopic images of MoS 2 fabricated on the SiO 2 /Si substrate by chemical vapor deposition. The relation between model performances and statistics of datasets is studied based on the international commission on illumination (CIE) 1931 color space and red, green, blue (RGB) histograms of optical contrast differences. Finally, the robust pretrained models are integrated into a graphic user interface for the on‐site use of full field‐of‐view images captured by bright‐field microscopes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
饱满绝施应助宇文听南采纳,获得20
刚刚
香蕉觅云应助含糊的夜绿采纳,获得10
1秒前
drs完成签到,获得积分10
2秒前
2秒前
11发布了新的文献求助10
3秒前
简单而复杂完成签到,获得积分10
4秒前
含蓄含烟发布了新的文献求助10
4秒前
云淡风轻完成签到,获得积分10
4秒前
5秒前
司徒文青应助outbed采纳,获得30
5秒前
5秒前
5秒前
SW完成签到,获得积分10
5秒前
6秒前
masonzhang完成签到,获得积分10
6秒前
爆米花应助静香采纳,获得10
6秒前
6秒前
Yuan完成签到,获得积分10
6秒前
6秒前
靓丽的战斗机完成签到,获得积分10
6秒前
7秒前
7秒前
罗健发布了新的文献求助10
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
SW发布了新的文献求助10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
幕帆应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
conny应助nancy wang采纳,获得10
9秒前
高分求助中
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
Artificial Intelligence: Foundations of ComputationalAgents, 3rd Edition Solution Manual and Instructor Resources 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308081
求助须知:如何正确求助?哪些是违规求助? 2941598
关于积分的说明 8504517
捐赠科研通 2616249
什么是DOI,文献DOI怎么找? 1429510
科研通“疑难数据库(出版商)”最低求助积分说明 663787
邀请新用户注册赠送积分活动 648720