Deep‐Learning‐Based Microscopic Imagery Classification, Segmentation, and Detection for the Identification of 2D Semiconductors

人工智能 计算机科学 深度学习 卷积神经网络 RGB颜色模型 稳健性(进化) 分割 模式识别(心理学) 支持向量机 计算机视觉 化学 生物化学 基因
作者
Xingchen Dong,Hongwei Li,Yuntian Yan,Haoran Cheng,Hui Xin Zhang,Yucheng Zhang,Tien Dat Le,Kun Wang,Jie Dong,Martin Jakobi,Ali K. Yetisen,Alexander W. Koch
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:5 (9) 被引量:8
标识
DOI:10.1002/adts.202200140
摘要

Abstract 2D materials and their heterostructures are prominent for fabricating next‐generation optical and photonic devices. The optical, electrical, and mechanical properties of 2D materials largely depend on atomic layer numbers. Although machine learning techniques are implemented to identify large‐area thickness distribution using microscopic images, the existing work mainly focuses on rough identification of thicknesses with in‐house datasets which limits fair and comprehensive comparisons of new machine learning approaches. Here, first a microscopic dataset is collected and released for three fundamental image processing tasks including multilabel classification, segmentation, and detection. Then three deep‐learning architectures DenseNet , U‐Net , and Mask‐region convolutional neural network (RCNN) are benchmarked on three tasks and their robustness is evaluated on the augmented 2D microscopic images with different optical contrast variations. Deep learning models are trained and evaluated to identify mono‐, bi‐, tri‐, multilayer and bulk flakes using microscopic images of MoS 2 fabricated on the SiO 2 /Si substrate by chemical vapor deposition. The relation between model performances and statistics of datasets is studied based on the international commission on illumination (CIE) 1931 color space and red, green, blue (RGB) histograms of optical contrast differences. Finally, the robust pretrained models are integrated into a graphic user interface for the on‐site use of full field‐of‐view images captured by bright‐field microscopes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lemon发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ccm应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
yzm发布了新的文献求助10
2秒前
2秒前
心心应助科研通管家采纳,获得10
2秒前
abccd123完成签到,获得积分10
2秒前
今后应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
77完成签到,获得积分10
3秒前
3秒前
4秒前
英姑应助八月宁静采纳,获得10
5秒前
上官若男应助万松辉采纳,获得10
6秒前
77发布了新的文献求助10
8秒前
研友_VZG7GZ应助yzm采纳,获得10
8秒前
可爱的函函应助应急食品采纳,获得10
9秒前
10秒前
汐颜紫雨完成签到,获得积分10
11秒前
12秒前
12秒前
fuyu98完成签到,获得积分10
13秒前
13秒前
mashibeo发布了新的文献求助30
15秒前
赵俊博发布了新的文献求助10
15秒前
盐焗小星球完成签到 ,获得积分10
15秒前
昏睡的朝雪完成签到,获得积分20
15秒前
GGMJ发布了新的文献求助10
16秒前
Aikesi完成签到,获得积分10
16秒前
lw不好找完成签到,获得积分10
17秒前
刻苦念桃发布了新的文献求助10
17秒前
pluto应助yuanying采纳,获得10
18秒前
万松辉发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073