Deep‐Learning‐Based Microscopic Imagery Classification, Segmentation, and Detection for the Identification of 2D Semiconductors

人工智能 计算机科学 深度学习 卷积神经网络 RGB颜色模型 稳健性(进化) 分割 模式识别(心理学) 支持向量机 计算机视觉 化学 生物化学 基因
作者
Xingchen Dong,Hongwei Li,Yuntian Yan,Haoran Cheng,Hui Xin Zhang,Yucheng Zhang,Tien Dat Le,Kun Wang,Jie Dong,Martin Jakobi,Ali K. Yetisen,Alexander W. Koch
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:5 (9) 被引量:8
标识
DOI:10.1002/adts.202200140
摘要

Abstract 2D materials and their heterostructures are prominent for fabricating next‐generation optical and photonic devices. The optical, electrical, and mechanical properties of 2D materials largely depend on atomic layer numbers. Although machine learning techniques are implemented to identify large‐area thickness distribution using microscopic images, the existing work mainly focuses on rough identification of thicknesses with in‐house datasets which limits fair and comprehensive comparisons of new machine learning approaches. Here, first a microscopic dataset is collected and released for three fundamental image processing tasks including multilabel classification, segmentation, and detection. Then three deep‐learning architectures DenseNet , U‐Net , and Mask‐region convolutional neural network (RCNN) are benchmarked on three tasks and their robustness is evaluated on the augmented 2D microscopic images with different optical contrast variations. Deep learning models are trained and evaluated to identify mono‐, bi‐, tri‐, multilayer and bulk flakes using microscopic images of MoS 2 fabricated on the SiO 2 /Si substrate by chemical vapor deposition. The relation between model performances and statistics of datasets is studied based on the international commission on illumination (CIE) 1931 color space and red, green, blue (RGB) histograms of optical contrast differences. Finally, the robust pretrained models are integrated into a graphic user interface for the on‐site use of full field‐of‐view images captured by bright‐field microscopes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Robot发布了新的文献求助10
1秒前
najaemin完成签到 ,获得积分10
3秒前
4秒前
领导范儿应助yuanshl1985采纳,获得10
4秒前
殷勤的花瓣完成签到 ,获得积分10
5秒前
5秒前
甜甜的静柏完成签到 ,获得积分10
7秒前
小白完成签到,获得积分10
7秒前
ARNI发布了新的文献求助10
8秒前
8秒前
kkkristian完成签到,获得积分10
9秒前
九珥完成签到 ,获得积分10
9秒前
11秒前
11秒前
Jodie发布了新的文献求助10
13秒前
大力水手完成签到,获得积分0
13秒前
13秒前
13秒前
15秒前
公子襄完成签到,获得积分10
16秒前
段晓倩发布了新的文献求助30
17秒前
yuanshl1985发布了新的文献求助10
17秒前
寻道图强应助重要襄采纳,获得30
19秒前
科目三应助fribbleeee采纳,获得10
20秒前
20秒前
科研通AI6应助Jodie采纳,获得10
22秒前
杨冠渊发布了新的文献求助10
22秒前
vivi发布了新的文献求助10
23秒前
行者无疆发布了新的文献求助10
24秒前
26秒前
28秒前
端庄的萝完成签到,获得积分10
28秒前
29秒前
29秒前
31秒前
虎虎生威完成签到,获得积分10
31秒前
段晓倩完成签到,获得积分10
31秒前
菠萝李发布了新的文献求助10
31秒前
ywj327发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870