Multiscale Dual-Branch Residual Spectral–Spatial Network With Attention for Hyperspectral Image Classification

高光谱成像 计算机科学 残余物 人工智能 模式识别(心理学) 冗余(工程) 主成分分析 特征提取 预处理器 数据冗余 特征(语言学) 保险丝(电气) 卷积(计算机科学) 空间分析 人工神经网络 遥感 算法 语言学 哲学 地质学 电气工程 工程类 操作系统
作者
Saeed Ghaderizadeh,Dariush Abbasi‐Moghadam,Alireza Sharifi,Aqil Tariq,Shujing Qin
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 5455-5467 被引量:65
标识
DOI:10.1109/jstars.2022.3188732
摘要

The development of remote sensing images in recent years has made it possible to identify materials in inaccessible environments and study natural materials on a large scale. But hyperspectral images (HSIs) are a rich source of information with their unique features in various applications. However, several problems reduce the accuracy of HSI classification; for example, the extracted features are not effective, noise, the correlation of bands, and most importantly, the limited labeled samples. To improve accuracy in the case of limited training samples, we propose a multiscale dual-branch residual spectral–spatial network with attention to the HSI classification model named MDBRSSN in this article. First, due to the correlation and redundancy between HSI bands, a principal component analysis operation is applied to preprocess the raw HSI data. Then, in MDBRSSN, a dual-branch structure is designed to extract the useful spectral–spatial features of HSI. The advanced feature, multiscale abstract information extracted by the convolution neural network, is applied to image processing, which can improve complex hyperspectral data classification accuracy. In addition, the attention mechanisms applied separately to each branch enable MDBRSSN to optimize and refine the extracted feature maps. Such an MDBRSSN framework can learn and fuse deeper hierarchical spectral–spatial features with fewer training samples. The purpose of designing the MDBRSSN model is to have high classification accuracy compared to state-of-the-art methods when the training samples are limited, which is proved by the results of the experiments in this article on four datasets. In Salinas, Pavia University, Indian Pines, and Houston 2013, the proposed model obtained 99.64%, 98.93%, 98.17%, and 96.57% overall accuracy using only 1%, 1%, 5%, and 5% of labeled data for training, respectively, which are much better compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXF发布了新的文献求助10
1秒前
1秒前
广陵散了发布了新的文献求助10
1秒前
2秒前
wzh完成签到,获得积分10
3秒前
称心誉发布了新的文献求助10
3秒前
3秒前
叡叡完成签到,获得积分10
4秒前
lcl发布了新的文献求助10
4秒前
4秒前
鹿友绿发布了新的文献求助10
5秒前
5秒前
sgt完成签到,获得积分10
5秒前
老板娘完成签到,获得积分10
5秒前
Buxi完成签到,获得积分10
6秒前
6秒前
EOS给111的求助进行了留言
6秒前
852应助研六六采纳,获得10
6秒前
6秒前
笨笨百招完成签到,获得积分10
7秒前
情怀应助兰禅子采纳,获得10
8秒前
8秒前
小彭友完成签到,获得积分10
8秒前
hawaii66完成签到,获得积分10
9秒前
heart发布了新的文献求助10
9秒前
9秒前
Helium完成签到,获得积分10
9秒前
llly发布了新的文献求助10
9秒前
思源应助华北走地鸡采纳,获得10
10秒前
小马甲应助兔先生采纳,获得10
10秒前
dad发布了新的文献求助10
10秒前
丘比特应助pp陶采纳,获得10
11秒前
Orange完成签到 ,获得积分10
12秒前
raycy完成签到,获得积分20
13秒前
搜集达人应助LMY采纳,获得10
13秒前
星辰大海应助ccc采纳,获得10
14秒前
闹铃儿完成签到,获得积分20
14秒前
prosperp举报唐展通求助涉嫌违规
15秒前
16秒前
我是老大应助十三采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3451182
求助须知:如何正确求助?哪些是违规求助? 3046720
关于积分的说明 9007559
捐赠科研通 2735491
什么是DOI,文献DOI怎么找? 1500328
科研通“疑难数据库(出版商)”最低求助积分说明 693546
邀请新用户注册赠送积分活动 691786