Universal framework for reconstructing complex networks and node dynamics from discrete or continuous dynamics data

计算机科学 节点(物理) 推论 网络动力学 系列(地层学) 伯努利原理 梯度下降 复杂网络 时间序列 人工神经网络 算法 人工智能 数学 机器学习 物理 万维网 古生物学 离散数学 热力学 生物 量子力学
作者
Yan Zhang,Yu Guo,Zhang Zhang,Mengyuan Chen,Shuo Wang,Jiang Zhang
出处
期刊:Physical review [American Physical Society]
卷期号:106 (3) 被引量:11
标识
DOI:10.1103/physreve.106.034315
摘要

Many dynamical processes of complex systems can be understood as the dynamics of a group of nodes interacting on a given network structure. However, finding such interaction structure and node dynamics from time series of node behaviors is tough. Conventional methods focus on either network structure inference task or dynamics reconstruction problem, very few of them can work well on both. This paper proposes a universal framework for reconstructing network structure and node dynamics at the same time from observed time-series data of nodes. We use a differentiable Bernoulli sampling process to generate a candidate network structure, and we use neural networks to simulate the node dynamics based on the candidate network. We then adjust all the parameters with a stochastic gradient descent algorithm to maximize the likelihood function defined on the data. The experiments show that our model can recover various network structures and node dynamics at the same time with high accuracy. It can also work well on binary, discrete, and continuous time-series data, and the reconstruction results are robust against noise and missing information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
LL爱读书发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
liyi完成签到,获得积分10
7秒前
7秒前
xiao发布了新的文献求助10
9秒前
心海完成签到,获得积分10
11秒前
莫离完成签到,获得积分10
12秒前
12秒前
纯良可可豆完成签到,获得积分10
13秒前
赘婿应助xiao采纳,获得10
17秒前
淘淘完成签到,获得积分10
17秒前
思源应助cc采纳,获得10
18秒前
内向的小凡完成签到,获得积分0
18秒前
11111111111111完成签到,获得积分10
19秒前
桐桐应助纯良可可豆采纳,获得10
20秒前
木子26年要毕业完成签到 ,获得积分10
22秒前
mafei发布了新的文献求助10
22秒前
小熊饼干发布了新的文献求助10
23秒前
迪克大完成签到,获得积分10
24秒前
27秒前
文刀发布了新的文献求助20
28秒前
蜘蛛侠发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
大个应助温暖寻雪采纳,获得10
31秒前
情怀应助兴奋迎彤采纳,获得10
31秒前
31秒前
蔡媛嫄发布了新的文献求助10
34秒前
LL爱读书完成签到,获得积分10
35秒前
Betty发布了新的文献求助10
36秒前
38秒前
慕青应助科研通管家采纳,获得10
41秒前
大模型应助科研通管家采纳,获得10
42秒前
Lucas应助科研通管家采纳,获得10
42秒前
情怀应助科研通管家采纳,获得10
42秒前
bkagyin应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
Orange应助科研通管家采纳,获得10
42秒前
温暖寻雪发布了新的文献求助10
44秒前
xiaoxiaoshu完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534713
关于积分的说明 14146435
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441690
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410579