Superpixel Guided Deformable Convolution Network for Hyperspectral Image Classification

人工智能 高光谱成像 模式识别(心理学) 计算机科学 卷积(计算机科学) 图像处理 图像(数学) 计算机视觉 人工神经网络
作者
Kai Zhao,Wen‐Xiang Zhu,Shou Feng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3838-3851 被引量:39
标识
DOI:10.1109/tip.2022.3176537
摘要

Convolutional neural networks are widely used in the field of hyperspectral image classification because of their excellent nonlinear feature extraction ability. However, as the sampling position of the regular convolution kernel is unchangeable, the regular convolution cannot distinctively extract the spatial and spectral information around the central pixel, which makes the classification results at the boundaries of ground objects over-smoothed and the classification performance degraded. Thus, we propose a novel superpixel guided deformable convolution network (SGDCN) for hyperspectral image classification. Firstly, the superpixel region fusion filter (SRF-Filter) is designed to fuse the initial superpixel region segmented by the simple linear iterative clustering (SLIC), making the fused superpixel region have a high homogeneity and also contain spatial features of diverse scales. Then, the superpixel guided deformable convolution (SGD-Conv) is proposed to make the shape of deformable convolution consistent with the real shape of land covers, and the SGD-Conv can extract pure neighborhood spatial-spectral features. Finally, a superpixel joint bilateral filter (SPJBF) is designed to solve the pixel-level and region-level misclassification problem, which can effectively utilize the superpixel region's homogeneity and improve the classification accuracy. Experiments on three HSI datasets indicate that the SGDCN can obtain better classification performance when compared with other twelve state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝃蝀发布了新的文献求助10
1秒前
1秒前
田yg完成签到,获得积分10
1秒前
1秒前
竹筏过海应助七七采纳,获得30
2秒前
2秒前
丸子发布了新的文献求助10
3秒前
3秒前
英姑应助yuer采纳,获得10
3秒前
Lrcx发布了新的文献求助10
3秒前
4秒前
笑一笑发布了新的文献求助10
4秒前
4秒前
LL发布了新的文献求助10
4秒前
CodeCraft应助昆医周杰伦采纳,获得10
4秒前
5秒前
wade发布了新的文献求助10
5秒前
Guoqing_Zhang关注了科研通微信公众号
5秒前
upcdelx发布了新的文献求助30
5秒前
紫瓜完成签到,获得积分10
6秒前
我是老大应助冰奈铁采纳,获得30
6秒前
快乐的一刀完成签到,获得积分10
7秒前
7秒前
烟花应助666采纳,获得10
7秒前
2211完成签到,获得积分10
7秒前
汉堡包应助杨静采纳,获得10
7秒前
快乐的凡霜完成签到,获得积分10
7秒前
小妖发布了新的文献求助10
8秒前
大脑袋应助科研通管家采纳,获得30
8秒前
无花果应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
herococa应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得30
8秒前
大个应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813