药效团
化学
小分子
二聚体
药物发现
单克隆抗体
配体(生物化学)
虚拟筛选
药品
癌症免疫疗法
免疫疗法
立体化学
抗体
计算生物学
免疫系统
药理学
生物化学
免疫学
医学
生物
受体
有机化学
作者
Viktor A. Urban,Alexander I. Davidovskii,Valery G. Veresov
标识
DOI:10.1080/07391102.2022.2085805
摘要
The programmed cell death ligand protein 1 (PD-L1) is a strong immunosuppressive molecule that inactivates tumor-specific T cells by binding to the programmed cell death- 1 protein (PD-1). Cancer immunotherapy based on the monoclonal antibodies targeting the PD-1/PD-L1 pathway has demonstrated therapeutic responses without precedent over a wide range of cancers. However, the antibody-based immunotherapies have several limitations such as high production cost or the induction of severe immune-related adverse effects. Small-molecule inhibitors of the PD-1/PD-L1 pathway are a promising alternative or complementary therapeutic to antibodies. Currently, the field of developing anti-PD-1/PD-L1 small-molecule inhibitors is intensively explored. In the present study a pharmacophore model was generated based on previously developed compounds and their atomistic structures with the PD-L1 dimer. Structure-based affinity-based virtual screening of small-molecule inhibitors of the PD-1/PD-L1 pathway according to the pharmacophore model followed by a screening in terms of drug-likeness resulted in ten hit compounds of high affinity towards the PD-L1 dimer and the satisfaction to all of the drug-likeness rules. Molecular dynamics (MD) simulations showed that nine of ten compounds formed stable complexes with the PD-L1 dimer as evidenced by the analysis of MD trajectories. Molecular mechanics Poisson- Boltzmann surface area (MM-PBSA) calculation revealed very low binding energies (<-46 kcal/mol) for the interactions of these ligands with the PD-L1 dimer, suggesting that identified compounds may serve as good scaffolds for the design of novel agents of antitumor immunotherapy able to target the PD-1/PD-L1 interactionCommunicated by Ramaswamy H. Sarma.
科研通智能强力驱动
Strongly Powered by AbleSci AI