Automatic detection and voxel‐wise mapping of lumbar spine Modic changes with deep learning

Modic变化 体素 人工智能 医学 深度学习 矢状面 磁共振成像 分割 腰椎 模式识别(心理学) 自编码 计算机科学 腰痛 放射科 病理 替代医学
作者
Kenneth T. Gao,Radhika Tibrewala,Madeline Hess,Upasana Bharadwaj,Gaurav Inamdar,Thomas M. Link,Cynthia Chin,Valentina Pedoia,Sharmila Majumdar
出处
期刊:JOR spine [Wiley]
卷期号:5 (2) 被引量:11
标识
DOI:10.1002/jsp2.1204
摘要

Modic changes (MCs) are the most prevalent classification system for describing magnetic resonance imaging (MRI) signal intensity changes in the vertebrae. However, there is a growing need for novel quantitative and standardized methods of characterizing these anomalies, particularly for lesions of transitional or mixed nature, due to the lack of conclusive evidence of their associations with low back pain. This retrospective imaging study aims to develop an interpretable deep learning-based detection tool for voxel-wise mapping of MCs.Seventy-five lumbar spine MRI exams that presented with acute-to-chronic low back pain, radiculopathy, and other symptoms of the lumbar spine were enrolled. The pipeline consists of two deep convolutional neural networks to generate an interpretable voxel-wise Modic map. First, an autoencoder was trained to segment vertebral bodies from T1-weighted sagittal lumbar spine images. Next, two radiologists segmented and labeled MCs from a combined T1- and T2-weighted assessment to serve as ground truth for training a second autoencoder that performs segmentation of MCs. The voxels in the detected regions were then categorized to the appropriate Modic type using a rule-based signal intensity algorithm. Post hoc, three radiologists independently graded a second dataset with the aid of the model predictions in an artificial (AI)-assisted experiment.The model successfully identified the presence of changes in 85.7% of samples in the unseen test set with a sensitivity of 0.71 (±0.072), specificity of 0.95 (±0.022), and Cohen's kappa score of 0.63. In the AI-assisted experiment, the agreement between the junior radiologist and the senior neuroradiologist significantly improved from Cohen's kappa score of 0.52 to 0.58 (p < 0.05).This deep learning-based approach demonstrates substantial agreement with radiologists and may serve as a tool to improve inter-rater reliability in the assessment of MCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的伯云完成签到,获得积分10
刚刚
科研通AI5应助nortun采纳,获得10
刚刚
HX3275完成签到,获得积分10
刚刚
zho发布了新的文献求助10
刚刚
1秒前
6528以完成签到 ,获得积分10
1秒前
1秒前
情怀应助柠萌采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Zj完成签到,获得积分10
3秒前
英姑应助囙氼仚采纳,获得10
4秒前
搜集达人应助虚幻盼晴采纳,获得10
5秒前
lan完成签到,获得积分10
5秒前
健忘可愁完成签到,获得积分10
6秒前
6秒前
赘婿应助尊敬沧海采纳,获得30
6秒前
keyanmy完成签到,获得积分10
6秒前
yang完成签到,获得积分20
7秒前
齐桓公发布了新的文献求助10
7秒前
7秒前
我爱学习完成签到 ,获得积分10
7秒前
8秒前
莫欺少年穷完成签到,获得积分10
8秒前
9秒前
囙氼仚完成签到,获得积分20
10秒前
10秒前
lan发布了新的文献求助10
11秒前
11秒前
12秒前
yang发布了新的文献求助30
12秒前
shadow完成签到,获得积分10
13秒前
14秒前
lbc发布了新的文献求助10
14秒前
齐桓公完成签到,获得积分10
14秒前
搞怪羊发布了新的文献求助10
14秒前
15秒前
繁星76发布了新的文献求助10
15秒前
大肉猪发布了新的文献求助10
16秒前
阡陌完成签到,获得积分10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662735
求助须知:如何正确求助?哪些是违规求助? 3223515
关于积分的说明 9752041
捐赠科研通 2933470
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771