TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction

人工智能 人工神经网络 三角学 计算机科学 水准点(测量) 机器学习 图形 采样(信号处理) 计算生物学 理论计算机科学 生物 数学 地理 几何学 大地测量学 滤波器(信号处理) 计算机视觉
作者
Wei Lu,Qifeng Wu,Jixian Zhang,Jiahua Rao,Chengtao Li,Shuangjia Zheng
标识
DOI:10.1101/2022.06.06.495043
摘要

Abstract Illuminating interactions between proteins and small drug molecules is a longstanding challenge in the field of drug discovery. Despite the importance of understanding these interactions, most previous works are limited by hand-designed scoring functions and insufficient conformation sampling. The recently-proposed graph neural network-based methods provides alternatives to predict protein-ligand complex conformation in a one-shot manner. However, these methods neglect the geometric constraints of the complex structure and weaken the role of local functional regions. As a result, they might produce unreasonable conformations for challenging targets and generalize poorly to novel proteins. In this paper, we propose Trigonometry-Aware Neural networKs for binding structure prediction, TANKBind, that builds trigonometry constraint as a vigorous inductive bias into the model and explicitly attends to all possible binding sites for each protein by segmenting the whole protein into functional blocks. We construct novel contrastive losses with local region negative sampling to jointly optimize the binding interaction and affinity. Extensive experiments show substantial performance gains in comparison to state-of-the-art physics-based and deep learning-based methods on commonly-used benchmark datasets for both binding structure and affinity predictions with variant settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渔婆发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得20
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
zyp应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
星期八完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
qupei完成签到 ,获得积分10
5秒前
6秒前
9秒前
10秒前
wu应助乔佳佳采纳,获得10
10秒前
科研通AI5应助RC_Wang采纳,获得200
10秒前
赫米娅完成签到,获得积分10
11秒前
12秒前
14秒前
马霄鑫完成签到,获得积分10
15秒前
gzyyb发布了新的文献求助10
16秒前
顾矜应助可乐采纳,获得10
16秒前
ding应助难过飞瑶采纳,获得30
20秒前
22秒前
Owen应助ghytrfd采纳,获得30
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489162
求助须知:如何正确求助?哪些是违规求助? 3076508
关于积分的说明 9145530
捐赠科研通 2768751
什么是DOI,文献DOI怎么找? 1519398
邀请新用户注册赠送积分活动 703805
科研通“疑难数据库(出版商)”最低求助积分说明 702009