电合成
材料科学
格式化
吸附
铋
法拉第效率
电化学
化学工程
解吸
碳纤维
催化作用
纳米技术
无机化学
电极
有机化学
复合材料
化学
物理化学
工程类
冶金
复合数
作者
Peng‐Fei Sui,Min‐Rui Gao,Subiao Liu,Chenyu Xu,Mengnan Zhu,Jing‐Li Luo
标识
DOI:10.1002/adfm.202203794
摘要
Abstract The electrochemical CO 2 reduction reaction (CO 2 RR) is a promising strategy to convert CO 2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO 2 RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO 2 adsorption properties and rapid CO 2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO 2 RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO 2 RR and the FE formate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO 2 RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO 2 adsorption properties to improve electrocatalytic performance for efficient CO 2 RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI