已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Thermal error modeling of motorized spindle based on Elman neural network optimized by sparrow search algorithm

人工神经网络 机床 机械加工 算法 工程类 热的 萤火虫算法 粒子群优化 控制理论(社会学) 计算机科学 人工智能 机械工程 物理 气象学 控制(管理)
作者
Zhaolong Li,Bo Zhu,Ye Dai,Wen-Hong Zhu,Qinghai Wang,Baodong Wang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:121 (1-2): 349-366 被引量:12
标识
DOI:10.1007/s00170-022-09260-7
摘要

The thermal error of the motorized spindle is an essential factor affecting the machining accuracy of high-speed numerically controlled machines. The establishment of a high-speed motorized spindle thermal error model for thermal error compensation can effectively improve the impact of thermal errors on the machining accuracy of the machine tool. This paper proposes a sparrow search algorithm to optimize the Elman neural network to predict thermal errors in motorized spindles. First is the simulation analysis on thermal characteristics of A02 high-speed motorized spindle. Based on the simulation results, the position of the temperature measuring points is arranged in the temperature and thermal error experiment of the motorized spindle. The temperature and thermal displacement data of high-speed motorized spindle at different rotational speeds were collected; secondly, the method of combining pedigree clustering and k-means clustering is used to perform cluster analysis on each temperature measurement point, and the grey correlation degree is used to determine the correlation between temperature measurement points and thermal error. Three temperature-sensitive points were screened from ten temperature measurement points, which reduced the collinearity between temperature measurement points and the number of independent variables of the model. Finally, the weights and thresholds of the Elman neural network are optimized by the sparrow search algorithm, and the thermal error prediction model of motorized spindle based on SSA-Elman neural network is established and compared with Elman neural network and Particle Swarm Optimized Elman Neural Network prediction model. The results show that the SSA-Elman neural network model has the highest prediction accuracy and exhibits good stability and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满飞荷发布了新的文献求助10
刚刚
2秒前
曲聋五完成签到 ,获得积分10
3秒前
pcr163应助王为森采纳,获得50
4秒前
田様应助王为森采纳,获得10
4秒前
知性的书竹完成签到,获得积分20
4秒前
lv发布了新的文献求助10
4秒前
慕青应助可能采纳,获得10
5秒前
Doctor_Mill完成签到,获得积分10
6秒前
xx发布了新的文献求助10
7秒前
皮卡球Oo发布了新的文献求助10
8秒前
赘婿应助cxx采纳,获得10
9秒前
LMH完成签到,获得积分10
10秒前
wanci应助smash采纳,获得10
11秒前
Jasper应助粥粥粥粥粥采纳,获得10
11秒前
英俊的铭应助大鲟采纳,获得10
15秒前
迟迟完成签到 ,获得积分10
16秒前
顾矜应助WDW采纳,获得10
19秒前
共享精神应助袁国锋采纳,获得10
20秒前
20秒前
20秒前
眼药水发布了新的文献求助10
20秒前
21秒前
22秒前
24秒前
25秒前
25秒前
smash发布了新的文献求助10
26秒前
perchasing发布了新的文献求助30
27秒前
27秒前
29秒前
30秒前
二一而已完成签到,获得积分10
31秒前
洋子完成签到 ,获得积分10
31秒前
ananan完成签到,获得积分10
31秒前
NexusExplorer应助orange9采纳,获得30
31秒前
清爽老九发布了新的文献求助10
31秒前
JamesPei应助温暖的天晴采纳,获得10
31秒前
WDW发布了新的文献求助10
32秒前
cxx发布了新的文献求助10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298487
求助须知:如何正确求助?哪些是违规求助? 2933521
关于积分的说明 8463742
捐赠科研通 2606483
什么是DOI,文献DOI怎么找? 1423208
科研通“疑难数据库(出版商)”最低求助积分说明 661589
邀请新用户注册赠送积分活动 645026