Thermal error modeling of motorized spindle based on Elman neural network optimized by sparrow search algorithm

人工神经网络 机床 机械加工 算法 工程类 热的 萤火虫算法 粒子群优化 控制理论(社会学) 计算机科学 人工智能 机械工程 物理 气象学 控制(管理)
作者
Zhaolong Li,Bo Zhu,Ye Dai,Wen-Hong Zhu,Qinghai Wang,Baodong Wang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:121 (1-2): 349-366 被引量:12
标识
DOI:10.1007/s00170-022-09260-7
摘要

The thermal error of the motorized spindle is an essential factor affecting the machining accuracy of high-speed numerically controlled machines. The establishment of a high-speed motorized spindle thermal error model for thermal error compensation can effectively improve the impact of thermal errors on the machining accuracy of the machine tool. This paper proposes a sparrow search algorithm to optimize the Elman neural network to predict thermal errors in motorized spindles. First is the simulation analysis on thermal characteristics of A02 high-speed motorized spindle. Based on the simulation results, the position of the temperature measuring points is arranged in the temperature and thermal error experiment of the motorized spindle. The temperature and thermal displacement data of high-speed motorized spindle at different rotational speeds were collected; secondly, the method of combining pedigree clustering and k-means clustering is used to perform cluster analysis on each temperature measurement point, and the grey correlation degree is used to determine the correlation between temperature measurement points and thermal error. Three temperature-sensitive points were screened from ten temperature measurement points, which reduced the collinearity between temperature measurement points and the number of independent variables of the model. Finally, the weights and thresholds of the Elman neural network are optimized by the sparrow search algorithm, and the thermal error prediction model of motorized spindle based on SSA-Elman neural network is established and compared with Elman neural network and Particle Swarm Optimized Elman Neural Network prediction model. The results show that the SSA-Elman neural network model has the highest prediction accuracy and exhibits good stability and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的紫雪完成签到 ,获得积分10
刚刚
刚刚
2秒前
2秒前
3秒前
不上课不行完成签到,获得积分10
4秒前
再干一杯完成签到,获得积分10
4秒前
5秒前
汉堡包应助rudjs采纳,获得10
6秒前
6秒前
zsyzxb发布了新的文献求助10
7秒前
东东发布了新的文献求助10
7秒前
zena92发布了新的文献求助10
8秒前
锤子米完成签到,获得积分10
8秒前
8秒前
赤练仙子完成签到,获得积分10
10秒前
MnO2fff应助zsyzxb采纳,获得20
13秒前
kingwill应助zsyzxb采纳,获得20
13秒前
顺利鱼完成签到,获得积分10
14秒前
16秒前
17秒前
Xx.完成签到,获得积分10
18秒前
星辰大海应助内向凌兰采纳,获得10
18秒前
18秒前
wuzhizhiya完成签到,获得积分10
19秒前
20秒前
rudjs发布了新的文献求助10
20秒前
23秒前
Ava应助何糖采纳,获得10
23秒前
桐桐应助美丽的芷烟采纳,获得10
23秒前
野子完成签到,获得积分10
24秒前
情怀应助小D采纳,获得30
25秒前
yuan发布了新的文献求助10
25秒前
berry发布了新的文献求助10
26秒前
26秒前
淡淡采白发布了新的文献求助10
27秒前
思源应助勤恳慕蕊采纳,获得10
27秒前
知犯何逆完成签到 ,获得积分10
28秒前
啊哈完成签到,获得积分10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808