Thermal error modeling of motorized spindle based on Elman neural network optimized by sparrow search algorithm

人工神经网络 机床 机械加工 算法 工程类 热的 萤火虫算法 粒子群优化 控制理论(社会学) 计算机科学 人工智能 机械工程 物理 控制(管理) 气象学
作者
Zhaolong Li,Bo Zhu,Ye Dai,Wenming Zhu,Qinghai Wang,Baodong Wang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:121 (1-2): 349-366 被引量:23
标识
DOI:10.1007/s00170-022-09260-7
摘要

The thermal error of the motorized spindle is an essential factor affecting the machining accuracy of high-speed numerically controlled machines. The establishment of a high-speed motorized spindle thermal error model for thermal error compensation can effectively improve the impact of thermal errors on the machining accuracy of the machine tool. This paper proposes a sparrow search algorithm to optimize the Elman neural network to predict thermal errors in motorized spindles. First is the simulation analysis on thermal characteristics of A02 high-speed motorized spindle. Based on the simulation results, the position of the temperature measuring points is arranged in the temperature and thermal error experiment of the motorized spindle. The temperature and thermal displacement data of high-speed motorized spindle at different rotational speeds were collected; secondly, the method of combining pedigree clustering and k-means clustering is used to perform cluster analysis on each temperature measurement point, and the grey correlation degree is used to determine the correlation between temperature measurement points and thermal error. Three temperature-sensitive points were screened from ten temperature measurement points, which reduced the collinearity between temperature measurement points and the number of independent variables of the model. Finally, the weights and thresholds of the Elman neural network are optimized by the sparrow search algorithm, and the thermal error prediction model of motorized spindle based on SSA-Elman neural network is established and compared with Elman neural network and Particle Swarm Optimized Elman Neural Network prediction model. The results show that the SSA-Elman neural network model has the highest prediction accuracy and exhibits good stability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leez完成签到,获得积分10
刚刚
刚刚
1秒前
WTT发布了新的文献求助10
1秒前
1秒前
笑点低的碧琴完成签到,获得积分10
1秒前
1秒前
1秒前
复杂听筠完成签到 ,获得积分10
2秒前
只是个昵称完成签到,获得积分20
2秒前
成就萤完成签到,获得积分10
2秒前
zihaolee完成签到 ,获得积分10
3秒前
3秒前
及禾发布了新的文献求助10
3秒前
WQQ完成签到,获得积分10
4秒前
大胆隶发布了新的文献求助10
4秒前
许子健发布了新的文献求助10
5秒前
MichelleLu发布了新的文献求助10
5秒前
6秒前
fanglin123完成签到,获得积分10
6秒前
Owen应助王哪跑12采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
隐形曼青应助吴志新采纳,获得10
7秒前
7秒前
7秒前
7秒前
清爽千亦关注了科研通微信公众号
7秒前
冷茗完成签到,获得积分10
7秒前
临风浩歌完成签到,获得积分10
7秒前
忐忑的雪糕完成签到 ,获得积分0
8秒前
8秒前
心旷神怡完成签到,获得积分10
8秒前
生动从寒完成签到,获得积分10
9秒前
大方小白发布了新的文献求助10
9秒前
领导范儿应助李玲玲采纳,获得10
10秒前
10秒前
大胆隶完成签到,获得积分10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646