Thermal error modeling of motorized spindle based on Elman neural network optimized by sparrow search algorithm

人工神经网络 机床 机械加工 算法 工程类 热的 萤火虫算法 粒子群优化 控制理论(社会学) 计算机科学 人工智能 机械工程 物理 控制(管理) 气象学
作者
Zhaolong Li,Bo Zhu,Ye Dai,Wenming Zhu,Qinghai Wang,Baodong Wang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:121 (1-2): 349-366 被引量:23
标识
DOI:10.1007/s00170-022-09260-7
摘要

The thermal error of the motorized spindle is an essential factor affecting the machining accuracy of high-speed numerically controlled machines. The establishment of a high-speed motorized spindle thermal error model for thermal error compensation can effectively improve the impact of thermal errors on the machining accuracy of the machine tool. This paper proposes a sparrow search algorithm to optimize the Elman neural network to predict thermal errors in motorized spindles. First is the simulation analysis on thermal characteristics of A02 high-speed motorized spindle. Based on the simulation results, the position of the temperature measuring points is arranged in the temperature and thermal error experiment of the motorized spindle. The temperature and thermal displacement data of high-speed motorized spindle at different rotational speeds were collected; secondly, the method of combining pedigree clustering and k-means clustering is used to perform cluster analysis on each temperature measurement point, and the grey correlation degree is used to determine the correlation between temperature measurement points and thermal error. Three temperature-sensitive points were screened from ten temperature measurement points, which reduced the collinearity between temperature measurement points and the number of independent variables of the model. Finally, the weights and thresholds of the Elman neural network are optimized by the sparrow search algorithm, and the thermal error prediction model of motorized spindle based on SSA-Elman neural network is established and compared with Elman neural network and Particle Swarm Optimized Elman Neural Network prediction model. The results show that the SSA-Elman neural network model has the highest prediction accuracy and exhibits good stability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYX完成签到,获得积分10
1秒前
1秒前
1秒前
思源应助天天文献我爱看采纳,获得20
1秒前
1秒前
尘远知山静完成签到 ,获得积分10
2秒前
刘墨乔完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
大海123发布了新的文献求助10
3秒前
钢铁侠发布了新的文献求助10
4秒前
Pumpkin完成签到,获得积分10
4秒前
Miaochen发布了新的文献求助10
4秒前
5秒前
坤坤发布了新的文献求助10
5秒前
xcx发布了新的文献求助10
5秒前
6秒前
7秒前
张小馨完成签到 ,获得积分10
7秒前
不可思议发布了新的文献求助10
8秒前
走起关注了科研通微信公众号
8秒前
8秒前
嘻xi完成签到 ,获得积分10
8秒前
害羞仙人掌完成签到,获得积分10
8秒前
爆米花应助克林采纳,获得30
9秒前
bkagyin应助jjjn采纳,获得10
9秒前
Akim应助精明的绿凝采纳,获得10
10秒前
钢铁侠完成签到,获得积分10
11秒前
标致夜蕾发布了新的文献求助10
11秒前
11秒前
菜菜完成签到,获得积分10
12秒前
12秒前
田様应助张月采纳,获得10
12秒前
FashionBoy应助嘻嘻采纳,获得10
12秒前
13秒前
13秒前
ding应助sweetsbt采纳,获得10
13秒前
zxx完成签到 ,获得积分0
14秒前
恩吉尔发布了新的文献求助10
14秒前
落后安露发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
戦後少女マンガ史 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155889
求助须知:如何正确求助?哪些是违规求助? 4351488
关于积分的说明 13549100
捐赠科研通 4194416
什么是DOI,文献DOI怎么找? 2300527
邀请新用户注册赠送积分活动 1300474
关于科研通互助平台的介绍 1245484