混合动力III
地质学
远足
百分位
骨盆
结构工程
模拟
计算机科学
数学
撞车
工程类
医学
解剖
统计
政治学
法学
程序设计语言
作者
Olivier Richard,Matthieu Lebarbé,Jérôme Uriot,Xavier Trosseille,Philippe Petit,Z. Jerry Wang,Ellen Lee
出处
期刊:SAE technical paper series
日期:2022-05-20
被引量:1
摘要
The Test Device for Human Occupant Restraint (THOR) is an advanced crash test dummy designed for frontal impact. Originally released in a 50th percentile male version (THOR-50M), a female 5th version (THOR-05F) was prototyped in 2017 (Wang et al., 2017) and compared with biofidelity sub-system tests (Wang et al., 2018). The same year, Trosseille et al. (2018) published response corridors using nine 5th percentile female Post Mortem Human Subjects (PMHS) tested in three sled configurations, including both submarining and non-submarining cases. The goal of this paper is to provide an initial evaluation of the THOR-05F biofidelity in a full-scale sled test, by comparing its response with the PMHS corridors published by Trosseille et al. (2018). Significant similarities between PMHS and THOR-05F were observed: as in Trosseille et al. (2018), the THOR-05F did not submarine in configuration 1, and submarined in configurations 2 and 3. The lap belt tension and seat forces were similar in magnitude. For configurations 2 and 3, the pelvis excursions were of the same order of magnitude between both human surrogates. However, significant differences were also observed: compared to the PMHS, the THOR-05F showed shoulder belt forces that were 1.6 to 2.1 times higher in magnitude, and lap belt force time histories that were delayed by 10 to 20 ms. In configuration 1, the chest and pelvis resultant accelerations of the dummy were delayed as well, and the pelvis excursion and rotation more than doubled that of the PMHS.
科研通智能强力驱动
Strongly Powered by AbleSci AI