Theoretical analysis on thermal grease dry-out degradation in space environment

散热膏 材料科学 热导率 复合材料 润滑油 热的 热阻 硅酮 挥发 硅油 热传导 润湿 化学 热力学 有机化学 物理
作者
Zhiyuan Jiang,J.Y. Li,Zechao Qu,L. Wang,Jianyin Miao
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:179: 107694-107694 被引量:11
标识
DOI:10.1016/j.ijthermalsci.2022.107694
摘要

Silicone thermal grease can reduce the contact thermal resistance of thermal interfaces and has been widely used as a thermal interface material in the thermal design of spacecraft. Silicone thermal grease gradually degrades owing to the dry-out of silicone oil during a long service period and breaks the validity of the thermal interface and induces thermal overload in a spacecraft. In this study, a mechanism-based prediction method for the silicone thermal grease loss in a space environment is proposed. The prediction of long-term thermal grease loss is realised by evaluating the variation in its effective thermal conductivity. In the prediction method, an improved multi-component thermal conductivity model was established to determine the thermal conductivity of thermal grease with multiple filler sizes and a high filler volume fraction. Then, the silicone oil loss induced by complex penetration, crawl, and volatilisation were evaluated with an equivalent capillary model and a volatilisation model. The behaviour of the silicone oil loss, the primary cause of dry-out degradation, was clarified. The variation in the effective thermal conductivity of thermal grease under different contact angles, operating temperatures, and connection surface dimensions was investigated. The results show that the dominant factor gradually changes from capillary loss to volatilisation loss during dry-out degradation. The effective thermal conductivity decreased faster at higher operating temperatures, and the effective thermal conductivity decreased slower with an increase in the contact angle and connection interface dimensions. The present work provides insights for the design of silicone thermal greases for space utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
snowdrift发布了新的文献求助10
刚刚
爆米花应助尊敬的钥匙采纳,获得10
刚刚
China完成签到,获得积分10
刚刚
Ll发布了新的文献求助10
刚刚
1秒前
李小胖完成签到,获得积分10
1秒前
刘鹏宇发布了新的文献求助10
2秒前
2秒前
2秒前
SXM发布了新的文献求助10
3秒前
duan完成签到,获得积分20
3秒前
MrCoolWu完成签到,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
Leif应助科研通管家采纳,获得20
4秒前
ding应助科研通管家采纳,获得20
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
zhang完成签到,获得积分10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI5应助liuguohua126采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
小星发布了新的文献求助10
5秒前
6秒前
6秒前
深情安青应助小可采纳,获得10
6秒前
7秒前
高大代容发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740