Theoretical analysis on thermal grease dry-out degradation in space environment

散热膏 材料科学 热导率 复合材料 润滑油 热的 热阻 硅酮 挥发 硅油 热传导 润湿 化学 热力学 有机化学 物理
作者
Zhiyuan Jiang,J.Y. Li,Zechao Qu,L. Wang,Jianyin Miao
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:179: 107694-107694 被引量:11
标识
DOI:10.1016/j.ijthermalsci.2022.107694
摘要

Silicone thermal grease can reduce the contact thermal resistance of thermal interfaces and has been widely used as a thermal interface material in the thermal design of spacecraft. Silicone thermal grease gradually degrades owing to the dry-out of silicone oil during a long service period and breaks the validity of the thermal interface and induces thermal overload in a spacecraft. In this study, a mechanism-based prediction method for the silicone thermal grease loss in a space environment is proposed. The prediction of long-term thermal grease loss is realised by evaluating the variation in its effective thermal conductivity. In the prediction method, an improved multi-component thermal conductivity model was established to determine the thermal conductivity of thermal grease with multiple filler sizes and a high filler volume fraction. Then, the silicone oil loss induced by complex penetration, crawl, and volatilisation were evaluated with an equivalent capillary model and a volatilisation model. The behaviour of the silicone oil loss, the primary cause of dry-out degradation, was clarified. The variation in the effective thermal conductivity of thermal grease under different contact angles, operating temperatures, and connection surface dimensions was investigated. The results show that the dominant factor gradually changes from capillary loss to volatilisation loss during dry-out degradation. The effective thermal conductivity decreased faster at higher operating temperatures, and the effective thermal conductivity decreased slower with an increase in the contact angle and connection interface dimensions. The present work provides insights for the design of silicone thermal greases for space utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
淡然平灵发布了新的文献求助10
4秒前
5秒前
哈哈完成签到,获得积分10
5秒前
矿泉水关注了科研通微信公众号
5秒前
6秒前
6秒前
我要毕业发布了新的文献求助10
7秒前
今后应助上进采纳,获得10
8秒前
9秒前
乐乐应助杰克李李采纳,获得10
9秒前
qiuxuan100完成签到,获得积分10
10秒前
霸气若菱完成签到,获得积分10
10秒前
无花果应助老板娘采纳,获得10
11秒前
活泼山雁发布了新的文献求助10
11秒前
13秒前
LFY发布了新的文献求助10
13秒前
充电宝应助yy采纳,获得10
16秒前
勤劳桐完成签到 ,获得积分10
18秒前
科研小李完成签到,获得积分10
18秒前
19秒前
柠檬01210发布了新的文献求助10
20秒前
苹果书兰完成签到,获得积分10
20秒前
JamesPei应助曹操的曹采纳,获得30
20秒前
21秒前
无虞完成签到,获得积分10
21秒前
矿泉水发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
文艺水风完成签到 ,获得积分10
24秒前
25秒前
万万想到了完成签到,获得积分10
25秒前
传奇3应助DING采纳,获得10
25秒前
chinzz应助阿信必发JACS采纳,获得10
26秒前
小程完成签到 ,获得积分10
27秒前
chinzz完成签到 ,获得积分10
27秒前
Prometheusss发布了新的文献求助200
27秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443976
求助须知:如何正确求助?哪些是违规求助? 3040026
关于积分的说明 8979713
捐赠科研通 2728615
什么是DOI,文献DOI怎么找? 1496604
科研通“疑难数据库(出版商)”最低求助积分说明 691789
邀请新用户注册赠送积分活动 689341