Theoretical analysis on thermal grease dry-out degradation in space environment

散热膏 材料科学 热导率 复合材料 润滑油 热的 热阻 硅酮 挥发 硅油 热传导 化学 热力学 有机化学 物理
作者
Zhiyuan Jiang,Jiaqi Li,Zechao Qu,L. Wang,Jianyin Miao
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:179: 107694-107694 被引量:16
标识
DOI:10.1016/j.ijthermalsci.2022.107694
摘要

Silicone thermal grease can reduce the contact thermal resistance of thermal interfaces and has been widely used as a thermal interface material in the thermal design of spacecraft. Silicone thermal grease gradually degrades owing to the dry-out of silicone oil during a long service period and breaks the validity of the thermal interface and induces thermal overload in a spacecraft. In this study, a mechanism-based prediction method for the silicone thermal grease loss in a space environment is proposed. The prediction of long-term thermal grease loss is realised by evaluating the variation in its effective thermal conductivity. In the prediction method, an improved multi-component thermal conductivity model was established to determine the thermal conductivity of thermal grease with multiple filler sizes and a high filler volume fraction. Then, the silicone oil loss induced by complex penetration, crawl, and volatilisation were evaluated with an equivalent capillary model and a volatilisation model. The behaviour of the silicone oil loss, the primary cause of dry-out degradation, was clarified. The variation in the effective thermal conductivity of thermal grease under different contact angles, operating temperatures, and connection surface dimensions was investigated. The results show that the dominant factor gradually changes from capillary loss to volatilisation loss during dry-out degradation. The effective thermal conductivity decreased faster at higher operating temperatures, and the effective thermal conductivity decreased slower with an increase in the contact angle and connection interface dimensions. The present work provides insights for the design of silicone thermal greases for space utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恋风恋歌发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
3秒前
bwh发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
霜降发布了新的文献求助10
5秒前
5秒前
星辰大海应助swh采纳,获得10
6秒前
野云关注了科研通微信公众号
7秒前
糊涂pipi完成签到,获得积分10
7秒前
写了能发发布了新的文献求助10
7秒前
Soulmate发布了新的文献求助10
8秒前
wangqinlei完成签到 ,获得积分10
8秒前
9秒前
胡莱完成签到,获得积分20
10秒前
PUPU完成签到,获得积分10
10秒前
11秒前
Owen应助大海采纳,获得10
12秒前
木木发布了新的文献求助150
12秒前
qing完成签到,获得积分10
12秒前
liuguanfeng完成签到,获得积分20
14秒前
朴实曼岚发布了新的文献求助10
14秒前
14秒前
15秒前
海盗船长发布了新的文献求助10
16秒前
晴朗发布了新的文献求助10
16秒前
16秒前
科研通AI6应助南星采纳,获得10
16秒前
朴实之玉完成签到 ,获得积分10
17秒前
xia发布了新的文献求助10
18秒前
藏鸟完成签到,获得积分10
19秒前
19秒前
大花完成签到,获得积分10
20秒前
21秒前
21秒前
且慢应助科研通管家采纳,获得10
21秒前
xxfsx应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091