胡椒粉
核糖核酸
结合位点
适体
配体(生物化学)
化学
核苷酸
碱基对
生物物理学
荧光
立体化学
结晶学
生物
生物化学
分子生物学
DNA
物理
受体
基因
食品科学
量子力学
作者
Huw C. Rees,Wojciech Gogacz,Nan-Sheng Li,Deepak Koirala,Joseph A. Piccirilli
标识
DOI:10.1021/acschembio.2c00290
摘要
Pepper is a fluorogenic RNA aptamer tag that binds to a variety of benzylidene-cyanophenyl (HBC) derivatives with tight affinity and activates their fluorescence. To investigate how Pepper RNA folds to create a binding site for HBC, we used antibody-assisted crystallography to determine the structures of Pepper bound to HBC530 and HBC599 to 2.3 and 2.7 Å resolutions, respectively. The structural data show that Pepper folds into an elongated structure and organizes nucleotides within an internal bulge to create the ligand binding site, assisted by an out-of-plane platform created by tertiary interactions with an adjacent bulge. As predicted from a lack of K+ dependence, Pepper does not use a G-quadruplex to form a binding pocket for HBC. Instead, Pepper uses a unique base-quadruple·base-triple stack to sandwich the ligand with a U·G wobble pair. Site-bound Mg2+ ions support ligand binding structurally and energetically. This research provides insight into the structural features that allow the Pepper aptamer to bind HBC and show how Pepper's function may expand to allow the in vivo detection of other small molecules and metals.
科研通智能强力驱动
Strongly Powered by AbleSci AI