Hand gesture recognition framework using a lie group based spatio-temporal recurrent network with multiple hand-worn motion sensors

手势 计算机科学 可穿戴计算机 手势识别 运动(物理) 代表(政治) 人工智能 光学(聚焦) 背景(考古学) 运动捕捉 可穿戴技术 人机交互 计算机视觉 钥匙(锁) 嵌入式系统 古生物学 物理 光学 政治 法学 生物 计算机安全 政治学
作者
Shu Wang,Aiguo Wang,Mengyuan Ran,Li Liu,Yuxin Peng,Ming Liu,Guoxin Su,Adi Alhudhaif,Fayadh Alenezi,Norah Alnaim
出处
期刊:Information Sciences [Elsevier]
卷期号:606: 722-741 被引量:23
标识
DOI:10.1016/j.ins.2022.05.085
摘要

The primary goal of hand gesture recognition with wearables is to facilitate the realization of gestural user interfaces in mobile and ubiquitous environments. A key challenge in wearable-based hand gesture recognition is the fact that a hand gesture can be performed in several ways, with each consisting of its own configuration of motions and their spatio-temporal dependencies. However, the existing methods generally focus on the characteristics of a single point on hand, but ignores the diversity of motion information over hand skeleton, and as a result, they suffer from two key challenges to characterize hand gestures over multiple wearable sensors: motion representation and motion modeling. This leads us to define a spatio-temporal framework, named STGauntlet, that explicitly characterizes the hand motion context of spatio-temporal relations among multiple bones and detects hand gestures in real-time. In particular, our framework incorporates Lie group-based representation to capture the inherent structural varieties of hand motions with spatio-temporal dependencies among multiple bones. To evaluate our framework, we developed a hand-worn prototype device with multiple motion sensors. Our in-lab study on a dataset collected from nine subjects suggests our approach significantly outperforms the state-of-the-art methods with the achievement of 98.2% and 95.6% average accuracies for subject dependent and independent gesture recognition, respectively. Specifically, we also show in-wild applications that highlight the interaction capability of our framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
carol发布了新的文献求助10
刚刚
sn完成签到,获得积分10
1秒前
1秒前
刘妮妮发布了新的文献求助10
1秒前
寒冷的夜蓉完成签到,获得积分10
1秒前
英姑应助小豆包采纳,获得10
1秒前
清爽太阳发布了新的文献求助10
1秒前
1秒前
御风发布了新的文献求助10
2秒前
方hh发布了新的文献求助20
2秒前
TheSilencer发布了新的文献求助10
2秒前
Violet发布了新的文献求助10
3秒前
华仔应助Antonio采纳,获得10
3秒前
啦啦啦完成签到,获得积分10
4秒前
4秒前
乐乐应助霸气的保温杯采纳,获得10
4秒前
4秒前
4秒前
冬瓜有内涵呐完成签到,获得积分10
5秒前
舒适砖头发布了新的文献求助10
5秒前
cookie发布了新的文献求助10
5秒前
粱乘风完成签到,获得积分10
5秒前
cassiel完成签到,获得积分10
6秒前
6秒前
hizhyhy完成签到,获得积分10
7秒前
Iriss完成签到,获得积分20
8秒前
容易发布了新的文献求助10
8秒前
毛豆应助张志迪采纳,获得10
8秒前
顾矜应助SunGuangkai采纳,获得10
8秒前
慧子无语完成签到,获得积分10
8秒前
skinnylove完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
害羞的安萱完成签到,获得积分10
10秒前
书南发布了新的文献求助10
10秒前
科研通AI2S应助Hastur00采纳,获得10
11秒前
11秒前
旧城以西发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186