Early diagnosis of Alzheimer's disease based on deep learning: A systematic review

计算机科学 深度学习 人工智能 机器学习 水准点(测量) 卷积神经网络 模式 初始化 学习迁移 神经影像学 人口 医学 精神科 社会科学 环境卫生 大地测量学 社会学 程序设计语言 地理
作者
Sina Fathi,Maryam Ahmadi,Afsaneh Dehnad
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105634-105634 被引量:71
标识
DOI:10.1016/j.compbiomed.2022.105634
摘要

The improvement of health indicators and life expectancy, especially in developed countries, has led to population growth and increased age-related diseases, including Alzheimer's disease (AD). Thus, the early detection of AD is valuable to stop its progress at an early stage. This study systematically reviewed the current state of using deep learning methods on neuroimaging data for timely diagnose of AD. We reviewed different deep models, modalities, feature extraction strategies, and parameter initialization methods to find out which model or strategy could offer better performance. Our search in eight different databases resulted in 736 studies, from which 74 studies were included to be reviewed for data analysis. Most studies have reported the normal control (NC)/AD classification and have shown desirable results. Although recent studies showed promising results of utilizing deep models on the NC/mild cognitive impairment (MCI) and NC/early MCI (eMCI), other classification groups should be taken into consideration and improved. The results of our review indicate that the comparative analysis is challenging in this area due to the lack of a benchmark platform; however, convolutional neural network (CNN)-based models, especially in an ensemble way, seem to perform better than other deep models. The transfer learning approach also could efficiently improve the performance and time complexity. Further research on designing a benchmark platform to facilitate the comparative analysis is recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
myuniv完成签到,获得积分10
刚刚
专注鸵鸟完成签到,获得积分10
刚刚
专注之双完成签到,获得积分10
1秒前
Zircon完成签到 ,获得积分10
2秒前
Much完成签到 ,获得积分10
3秒前
3秒前
充电宝应助颠覆乾坤采纳,获得10
4秒前
5秒前
无花果应助pz采纳,获得10
5秒前
zheng完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
星辰大海应助荔枝采纳,获得10
8秒前
LJL发布了新的文献求助10
9秒前
meng发布了新的文献求助10
9秒前
无私的颤完成签到,获得积分10
9秒前
lucky完成签到 ,获得积分10
10秒前
Zel博博完成签到,获得积分10
10秒前
谷粱诗云完成签到,获得积分10
10秒前
yar应助myuniv采纳,获得10
10秒前
xc完成签到 ,获得积分10
11秒前
11秒前
干净的天与完成签到,获得积分10
11秒前
哈基米德应助毅诚菌采纳,获得10
13秒前
铁甲小杨完成签到,获得积分0
13秒前
14秒前
卡机了完成签到,获得积分10
15秒前
平淡绿柏完成签到,获得积分10
17秒前
架子猫发布了新的文献求助10
17秒前
17秒前
颠覆乾坤发布了新的文献求助10
18秒前
乔乔完成签到,获得积分10
19秒前
学术小白完成签到,获得积分10
19秒前
min完成签到,获得积分10
19秒前
19秒前
汉堡包应助slin_sjtu采纳,获得10
19秒前
czx完成签到,获得积分10
20秒前
szxnb666发布了新的文献求助30
20秒前
MRJJJJ完成签到,获得积分10
20秒前
chaser完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022