Early diagnosis of Alzheimer's disease based on deep learning: A systematic review

计算机科学 深度学习 人工智能 机器学习 水准点(测量) 卷积神经网络 模式 初始化 学习迁移 神经影像学 人口 医学 精神科 社会科学 环境卫生 大地测量学 社会学 程序设计语言 地理
作者
Sina Fathi,Maryam Ahmadi,Afsaneh Dehnad
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105634-105634 被引量:71
标识
DOI:10.1016/j.compbiomed.2022.105634
摘要

The improvement of health indicators and life expectancy, especially in developed countries, has led to population growth and increased age-related diseases, including Alzheimer's disease (AD). Thus, the early detection of AD is valuable to stop its progress at an early stage. This study systematically reviewed the current state of using deep learning methods on neuroimaging data for timely diagnose of AD. We reviewed different deep models, modalities, feature extraction strategies, and parameter initialization methods to find out which model or strategy could offer better performance. Our search in eight different databases resulted in 736 studies, from which 74 studies were included to be reviewed for data analysis. Most studies have reported the normal control (NC)/AD classification and have shown desirable results. Although recent studies showed promising results of utilizing deep models on the NC/mild cognitive impairment (MCI) and NC/early MCI (eMCI), other classification groups should be taken into consideration and improved. The results of our review indicate that the comparative analysis is challenging in this area due to the lack of a benchmark platform; however, convolutional neural network (CNN)-based models, especially in an ensemble way, seem to perform better than other deep models. The transfer learning approach also could efficiently improve the performance and time complexity. Further research on designing a benchmark platform to facilitate the comparative analysis is recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joshua完成签到,获得积分0
1秒前
1秒前
1秒前
不许放羊完成签到 ,获得积分10
4秒前
bkagyin应助Jiaowen采纳,获得10
4秒前
星期五发布了新的文献求助10
4秒前
呆萌笑晴发布了新的文献求助10
4秒前
mit完成签到 ,获得积分10
5秒前
6秒前
彭于晏应助欣慰的乌冬面采纳,获得10
7秒前
端木永乐完成签到 ,获得积分10
8秒前
小满完成签到,获得积分10
8秒前
小二郎应助诺安成长混合采纳,获得10
9秒前
10秒前
邢文瑞发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
12秒前
13秒前
小猪猪饲养员完成签到,获得积分10
13秒前
zheng-homes发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助老白采纳,获得10
14秒前
酷波er应助Hannibal采纳,获得10
15秒前
15秒前
优秀以寒发布了新的文献求助10
16秒前
16秒前
端木永乐关注了科研通微信公众号
17秒前
wan发布了新的文献求助10
18秒前
18秒前
19秒前
小怡发布了新的文献求助10
19秒前
19秒前
顾矜应助半岛海盐采纳,获得10
20秒前
20秒前
ACCEPT发布了新的文献求助10
21秒前
Puan发布了新的文献求助10
21秒前
大个应助宋宇骐采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579