Early diagnosis of Alzheimer's disease based on deep learning: A systematic review

计算机科学 深度学习 人工智能 机器学习 水准点(测量) 卷积神经网络 模式 初始化 学习迁移 神经影像学 人口 医学 精神科 社会科学 环境卫生 大地测量学 社会学 程序设计语言 地理
作者
Sina Fathi,Maryam Ahmadi,Afsaneh Dehnad
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105634-105634 被引量:55
标识
DOI:10.1016/j.compbiomed.2022.105634
摘要

The improvement of health indicators and life expectancy, especially in developed countries, has led to population growth and increased age-related diseases, including Alzheimer's disease (AD). Thus, the early detection of AD is valuable to stop its progress at an early stage. This study systematically reviewed the current state of using deep learning methods on neuroimaging data for timely diagnose of AD. We reviewed different deep models, modalities, feature extraction strategies, and parameter initialization methods to find out which model or strategy could offer better performance. Our search in eight different databases resulted in 736 studies, from which 74 studies were included to be reviewed for data analysis. Most studies have reported the normal control (NC)/AD classification and have shown desirable results. Although recent studies showed promising results of utilizing deep models on the NC/mild cognitive impairment (MCI) and NC/early MCI (eMCI), other classification groups should be taken into consideration and improved. The results of our review indicate that the comparative analysis is challenging in this area due to the lack of a benchmark platform; however, convolutional neural network (CNN)-based models, especially in an ensemble way, seem to perform better than other deep models. The transfer learning approach also could efficiently improve the performance and time complexity. Further research on designing a benchmark platform to facilitate the comparative analysis is recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
暗冰不冻应助KK采纳,获得10
1秒前
zy完成签到,获得积分10
1秒前
寄云间发布了新的文献求助10
2秒前
tutuutut发布了新的文献求助10
2秒前
2秒前
3秒前
科研通AI2S应助科研小锄头采纳,获得10
3秒前
wt200001发布了新的文献求助10
3秒前
英俊的铭应助何雨亭采纳,获得10
4秒前
xiiin完成签到,获得积分10
4秒前
szy发布了新的文献求助10
5秒前
6秒前
无奈的映阳完成签到 ,获得积分10
6秒前
7秒前
李健完成签到,获得积分10
7秒前
xgl完成签到,获得积分10
7秒前
8秒前
ECKART完成签到,获得积分10
8秒前
guositing发布了新的文献求助10
9秒前
9秒前
我爱看论文给我爱看论文的求助进行了留言
10秒前
暮霭沉沉应助Yjj采纳,获得10
11秒前
小吴发布了新的文献求助10
11秒前
学无止境发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
14秒前
16秒前
小白完成签到,获得积分10
18秒前
wt200001完成签到,获得积分10
18秒前
18秒前
F1y关闭了F1y文献求助
19秒前
谦让蜜蜂发布了新的文献求助30
19秒前
txfxh发布了新的文献求助10
19秒前
乐乐完成签到 ,获得积分10
20秒前
tunacan完成签到 ,获得积分10
21秒前
什么东西这么好看完成签到,获得积分10
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167914
求助须知:如何正确求助?哪些是违规求助? 2819401
关于积分的说明 7926122
捐赠科研通 2479250
什么是DOI,文献DOI怎么找? 1320684
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443