Early diagnosis of Alzheimer's disease based on deep learning: A systematic review

计算机科学 深度学习 人工智能 机器学习 水准点(测量) 卷积神经网络 模式 初始化 学习迁移 神经影像学 人口 医学 精神科 社会科学 环境卫生 大地测量学 社会学 程序设计语言 地理
作者
Sina Fathi,Maryam Ahmadi,Afsaneh Dehnad
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105634-105634 被引量:71
标识
DOI:10.1016/j.compbiomed.2022.105634
摘要

The improvement of health indicators and life expectancy, especially in developed countries, has led to population growth and increased age-related diseases, including Alzheimer's disease (AD). Thus, the early detection of AD is valuable to stop its progress at an early stage. This study systematically reviewed the current state of using deep learning methods on neuroimaging data for timely diagnose of AD. We reviewed different deep models, modalities, feature extraction strategies, and parameter initialization methods to find out which model or strategy could offer better performance. Our search in eight different databases resulted in 736 studies, from which 74 studies were included to be reviewed for data analysis. Most studies have reported the normal control (NC)/AD classification and have shown desirable results. Although recent studies showed promising results of utilizing deep models on the NC/mild cognitive impairment (MCI) and NC/early MCI (eMCI), other classification groups should be taken into consideration and improved. The results of our review indicate that the comparative analysis is challenging in this area due to the lack of a benchmark platform; however, convolutional neural network (CNN)-based models, especially in an ensemble way, seem to perform better than other deep models. The transfer learning approach also could efficiently improve the performance and time complexity. Further research on designing a benchmark platform to facilitate the comparative analysis is recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助星宇采纳,获得10
刚刚
17发布了新的文献求助10
2秒前
3秒前
叶强发布了新的文献求助10
5秒前
LEMONS应助欧阳采纳,获得10
5秒前
jenningseastera举报FartKing求助涉嫌违规
6秒前
量子星尘发布了新的文献求助10
7秒前
可研小冲发布了新的文献求助10
8秒前
刘志娇完成签到,获得积分20
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
djiwisksk66应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
情怀应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
13秒前
欧阳完成签到,获得积分10
15秒前
flow完成签到,获得积分10
15秒前
16秒前
16秒前
郑恒松完成签到,获得积分10
17秒前
pluto应助许志森采纳,获得10
18秒前
Jasper应助柔弱的马里奥采纳,获得10
20秒前
郑恒松发布了新的文献求助10
21秒前
21秒前
hnxxangel完成签到,获得积分10
22秒前
张杰完成签到,获得积分10
23秒前
无花果应助酷酷绿兰采纳,获得10
23秒前
拼搏的潘子完成签到,获得积分10
24秒前
fafa完成签到 ,获得积分10
24秒前
无奈的黑猫完成签到,获得积分20
26秒前
田様应助Steve采纳,获得10
27秒前
27秒前
天天快乐应助郑恒松采纳,获得10
28秒前
28秒前
刘志娇发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844