Multi-scale Sparse Network with Cross-Attention Mechanism for image-based butterflies fine-grained classification

蝴蝶 计算机科学 人工智能 比例(比率) 模式识别(心理学) 图像(数学) 差异(会计) 数据挖掘 机器学习 物理 财务 量子力学 经济 业务 会计
作者
Maopeng Li,Guoxiong Zhou,Weiwei Cai,Jiayong Li,Mingxuan Li,Mingfang He,Yahui Hu,Liujun Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:117: 108419-108419 被引量:25
标识
DOI:10.1016/j.asoc.2022.108419
摘要

Butterfly protection is critical for environmental protection, and butterfly classification study is an essential tool for doing so. We proposed a new fine-grained butterfly classification architecture to address the issues of duplicate information in some butterfly images and trouble identifying them due to their tiny inter-class variance. To begin, a Non-Local Mean Filtering and Multi-Scale Retinex-based method (NL-MSR) is employed to enhance the butterfly images in order to efficiently retain more detail information. Then, to accomplish fine-grained categorization of butterfly images, a Multi-scale Sparse Network with Cross-Attention Mechanism (CA-MSNet) is designed. In CA-MSNet, a Cross-Attention Mechanism module (CAM) that offers distinct weights in the horizontal and vertical directions based on two strategies is devised to successfully identify the spatial distribution of butterfly stripes and spots and suppress incorrect information. Then, to overcome the recognition problem of butterfly spots with small inter-class variance, a Multi-scale sparse module (MSS) with multi-scale receptive fields is constructed. Finally, a Depthwise Separable Convolution module is employed to mitigate the parameter rise induced by the MSS network. In order to validate the model’s feasibility and effectiveness in a complex environment, we compared it to existing methods, and our proposed method achieved an average recognition accuracy of 91.88%, with an F1 value of 92.15%, indicating that it has a good effect on the fine-grained classification of butterflies and can be applied to their recognition to realize their protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
1秒前
yangcong发布了新的文献求助10
1秒前
1秒前
南楼归雁完成签到,获得积分10
2秒前
小蘑菇应助hehe24856采纳,获得10
2秒前
tectextey完成签到,获得积分10
3秒前
hhan完成签到 ,获得积分10
3秒前
在水一方应助快乐搞钱hh采纳,获得10
4秒前
科研通AI5应助Shahid采纳,获得10
4秒前
4秒前
小伊发布了新的文献求助10
4秒前
欢喜的保温杯完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
赵永斌完成签到,获得积分20
5秒前
6秒前
Hello应助想早点退休采纳,获得10
6秒前
wenran雪发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
一位名圆完成签到,获得积分10
7秒前
8秒前
8秒前
Owen应助青青采纳,获得10
8秒前
搜集达人应助土豆淀粉采纳,获得10
8秒前
9秒前
科研通AI2S应助小蚊子采纳,获得10
9秒前
9秒前
上官若男应助王哪跑12采纳,获得10
9秒前
CodeCraft应助yangcong采纳,获得10
9秒前
gwentea发布了新的文献求助10
10秒前
10秒前
暖暖发布了新的文献求助10
10秒前
Jessekwok完成签到,获得积分10
11秒前
11秒前
11秒前
赵永斌发布了新的文献求助10
11秒前
lily000完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403