Multi-scale Sparse Network with Cross-Attention Mechanism for image-based butterflies fine-grained classification

蝴蝶 计算机科学 人工智能 比例(比率) 模式识别(心理学) 图像(数学) 差异(会计) 数据挖掘 机器学习 物理 财务 量子力学 经济 业务 会计
作者
Maopeng Li,Guoxiong Zhou,Weiwei Cai,Jiayong Li,Mingxuan Li,Mingfang He,Yahui Hu,Liujun Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:117: 108419-108419 被引量:25
标识
DOI:10.1016/j.asoc.2022.108419
摘要

Butterfly protection is critical for environmental protection, and butterfly classification study is an essential tool for doing so. We proposed a new fine-grained butterfly classification architecture to address the issues of duplicate information in some butterfly images and trouble identifying them due to their tiny inter-class variance. To begin, a Non-Local Mean Filtering and Multi-Scale Retinex-based method (NL-MSR) is employed to enhance the butterfly images in order to efficiently retain more detail information. Then, to accomplish fine-grained categorization of butterfly images, a Multi-scale Sparse Network with Cross-Attention Mechanism (CA-MSNet) is designed. In CA-MSNet, a Cross-Attention Mechanism module (CAM) that offers distinct weights in the horizontal and vertical directions based on two strategies is devised to successfully identify the spatial distribution of butterfly stripes and spots and suppress incorrect information. Then, to overcome the recognition problem of butterfly spots with small inter-class variance, a Multi-scale sparse module (MSS) with multi-scale receptive fields is constructed. Finally, a Depthwise Separable Convolution module is employed to mitigate the parameter rise induced by the MSS network. In order to validate the model’s feasibility and effectiveness in a complex environment, we compared it to existing methods, and our proposed method achieved an average recognition accuracy of 91.88%, with an F1 value of 92.15%, indicating that it has a good effect on the fine-grained classification of butterflies and can be applied to their recognition to realize their protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hyf567完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
YDSG完成签到,获得积分10
3秒前
英姑应助青铜伤疤采纳,获得10
4秒前
yu完成签到,获得积分10
4秒前
euphoria完成签到,获得积分10
4秒前
缓慢的香芦完成签到,获得积分10
5秒前
闲听花落完成签到,获得积分10
5秒前
5秒前
耍酷的棉花糖完成签到,获得积分10
5秒前
舟郡完成签到,获得积分10
6秒前
Kindy完成签到,获得积分10
6秒前
6秒前
YY完成签到,获得积分10
6秒前
euphoria发布了新的文献求助10
7秒前
英姑应助lull采纳,获得10
7秒前
科研通AI2S应助sansan采纳,获得10
8秒前
wangjing发布了新的文献求助30
8秒前
enen完成签到,获得积分10
9秒前
9秒前
semiaa完成签到,获得积分10
9秒前
十一发布了新的文献求助10
9秒前
yyyyyhh发布了新的文献求助10
10秒前
Francohf发布了新的文献求助10
10秒前
爆米花应助吐司匹林采纳,获得10
11秒前
Zx完成签到 ,获得积分10
12秒前
dyfsj发布了新的文献求助30
12秒前
Aki_27完成签到,获得积分10
12秒前
syiimo完成签到 ,获得积分10
12秒前
虚幻雅绿完成签到,获得积分10
13秒前
depurge完成签到,获得积分10
14秒前
年少发布了新的文献求助10
14秒前
ZZzz发布了新的文献求助20
15秒前
姜姜完成签到,获得积分20
15秒前
16秒前
跳跃曼文完成签到,获得积分10
16秒前
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230694
求助须知:如何正确求助?哪些是违规求助? 2878026
关于积分的说明 8204126
捐赠科研通 2545452
什么是DOI,文献DOI怎么找? 1375124
科研通“疑难数据库(出版商)”最低求助积分说明 647289
邀请新用户注册赠送积分活动 622376