Multi-scale Sparse Network with Cross-Attention Mechanism for image-based butterflies fine-grained classification

蝴蝶 计算机科学 人工智能 比例(比率) 模式识别(心理学) 图像(数学) 差异(会计) 数据挖掘 机器学习 物理 财务 量子力学 经济 业务 会计
作者
Maopeng Li,Guoxiong Zhou,Weiwei Cai,Jiayong Li,Mingxuan Li,Mingfang He,Yahui Hu,Liujun Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:117: 108419-108419 被引量:25
标识
DOI:10.1016/j.asoc.2022.108419
摘要

Butterfly protection is critical for environmental protection, and butterfly classification study is an essential tool for doing so. We proposed a new fine-grained butterfly classification architecture to address the issues of duplicate information in some butterfly images and trouble identifying them due to their tiny inter-class variance. To begin, a Non-Local Mean Filtering and Multi-Scale Retinex-based method (NL-MSR) is employed to enhance the butterfly images in order to efficiently retain more detail information. Then, to accomplish fine-grained categorization of butterfly images, a Multi-scale Sparse Network with Cross-Attention Mechanism (CA-MSNet) is designed. In CA-MSNet, a Cross-Attention Mechanism module (CAM) that offers distinct weights in the horizontal and vertical directions based on two strategies is devised to successfully identify the spatial distribution of butterfly stripes and spots and suppress incorrect information. Then, to overcome the recognition problem of butterfly spots with small inter-class variance, a Multi-scale sparse module (MSS) with multi-scale receptive fields is constructed. Finally, a Depthwise Separable Convolution module is employed to mitigate the parameter rise induced by the MSS network. In order to validate the model’s feasibility and effectiveness in a complex environment, we compared it to existing methods, and our proposed method achieved an average recognition accuracy of 91.88%, with an F1 value of 92.15%, indicating that it has a good effect on the fine-grained classification of butterflies and can be applied to their recognition to realize their protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
11完成签到,获得积分10
2秒前
2秒前
拉拉发布了新的文献求助10
4秒前
4秒前
冉徐凤发布了新的文献求助10
5秒前
忙碌的数学人完成签到,获得积分10
6秒前
Liu完成签到,获得积分10
7秒前
加减乘除发布了新的文献求助10
7秒前
7秒前
Hello应助roclie采纳,获得10
8秒前
9秒前
锤子发布了新的文献求助10
9秒前
自由莺完成签到 ,获得积分10
9秒前
正直无极完成签到,获得积分10
10秒前
ym完成签到 ,获得积分10
10秒前
laura发布了新的文献求助10
10秒前
李健应助屹男采纳,获得10
13秒前
13秒前
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
Dada应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得30
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
拉拉完成签到,获得积分20
14秒前
CCL应助科研通管家采纳,获得40
14秒前
棋士应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
liaodongjun应助科研通管家采纳,获得10
14秒前
14秒前
棋士应助科研通管家采纳,获得10
14秒前
kyt发布了新的文献求助10
14秒前
ZZQ发布了新的文献求助10
15秒前
zxc完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500524
关于积分的说明 11099808
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869904
科研通“疑难数据库(出版商)”最低求助积分说明 801717