Multi-scale Sparse Network with Cross-Attention Mechanism for image-based butterflies fine-grained classification

蝴蝶 计算机科学 人工智能 比例(比率) 模式识别(心理学) 图像(数学) 差异(会计) 数据挖掘 机器学习 物理 财务 量子力学 经济 业务 会计
作者
Maopeng Li,Guoxiong Zhou,Weiwei Cai,Jiayong Li,Mingxuan Li,Mingfang He,Yahui Hu,Liujun Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:117: 108419-108419 被引量:25
标识
DOI:10.1016/j.asoc.2022.108419
摘要

Butterfly protection is critical for environmental protection, and butterfly classification study is an essential tool for doing so. We proposed a new fine-grained butterfly classification architecture to address the issues of duplicate information in some butterfly images and trouble identifying them due to their tiny inter-class variance. To begin, a Non-Local Mean Filtering and Multi-Scale Retinex-based method (NL-MSR) is employed to enhance the butterfly images in order to efficiently retain more detail information. Then, to accomplish fine-grained categorization of butterfly images, a Multi-scale Sparse Network with Cross-Attention Mechanism (CA-MSNet) is designed. In CA-MSNet, a Cross-Attention Mechanism module (CAM) that offers distinct weights in the horizontal and vertical directions based on two strategies is devised to successfully identify the spatial distribution of butterfly stripes and spots and suppress incorrect information. Then, to overcome the recognition problem of butterfly spots with small inter-class variance, a Multi-scale sparse module (MSS) with multi-scale receptive fields is constructed. Finally, a Depthwise Separable Convolution module is employed to mitigate the parameter rise induced by the MSS network. In order to validate the model’s feasibility and effectiveness in a complex environment, we compared it to existing methods, and our proposed method achieved an average recognition accuracy of 91.88%, with an F1 value of 92.15%, indicating that it has a good effect on the fine-grained classification of butterflies and can be applied to their recognition to realize their protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
刚刚
1秒前
研友_Z1eDgZ发布了新的文献求助10
1秒前
李健应助SUNXI采纳,获得10
1秒前
DingShuaikai完成签到,获得积分10
1秒前
vousme完成签到 ,获得积分10
1秒前
图雄争霸完成签到 ,获得积分10
1秒前
zonker完成签到,获得积分10
1秒前
丘比特应助lawang采纳,获得10
1秒前
淡然水绿完成签到,获得积分10
2秒前
3秒前
青山完成签到 ,获得积分10
3秒前
4秒前
科研通AI6应助疑问采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
欢呼山雁完成签到,获得积分10
4秒前
Oct_Y完成签到,获得积分10
5秒前
学茶小白发布了新的文献求助10
5秒前
Bordyfan完成签到,获得积分10
5秒前
Simon发布了新的文献求助20
5秒前
邵振启发布了新的文献求助10
6秒前
小林子完成签到 ,获得积分10
6秒前
David123完成签到,获得积分10
7秒前
三三磊完成签到,获得积分10
7秒前
7秒前
7秒前
zz完成签到,获得积分20
7秒前
SUNXI完成签到,获得积分20
8秒前
8秒前
hhh2018687完成签到,获得积分10
9秒前
Nozomi发布了新的文献求助200
10秒前
10秒前
彭于晏应助大气的从雪采纳,获得10
11秒前
Air云完成签到,获得积分10
11秒前
口爱DI乔巴完成签到,获得积分10
12秒前
学茶小白完成签到,获得积分10
12秒前
kun完成签到 ,获得积分20
12秒前
12秒前
dktrrrr完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651622
求助须知:如何正确求助?哪些是违规求助? 4785400
关于积分的说明 15054736
捐赠科研通 4810228
什么是DOI,文献DOI怎么找? 2573047
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934