Multi-scale Sparse Network with Cross-Attention Mechanism for image-based butterflies fine-grained classification

蝴蝶 计算机科学 人工智能 比例(比率) 模式识别(心理学) 图像(数学) 差异(会计) 数据挖掘 机器学习 物理 财务 量子力学 经济 业务 会计
作者
Maopeng Li,Guoxiong Zhou,Weiwei Cai,Jiayong Li,Mingxuan Li,Mingfang He,Yahui Hu,Liujun Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:117: 108419-108419 被引量:25
标识
DOI:10.1016/j.asoc.2022.108419
摘要

Butterfly protection is critical for environmental protection, and butterfly classification study is an essential tool for doing so. We proposed a new fine-grained butterfly classification architecture to address the issues of duplicate information in some butterfly images and trouble identifying them due to their tiny inter-class variance. To begin, a Non-Local Mean Filtering and Multi-Scale Retinex-based method (NL-MSR) is employed to enhance the butterfly images in order to efficiently retain more detail information. Then, to accomplish fine-grained categorization of butterfly images, a Multi-scale Sparse Network with Cross-Attention Mechanism (CA-MSNet) is designed. In CA-MSNet, a Cross-Attention Mechanism module (CAM) that offers distinct weights in the horizontal and vertical directions based on two strategies is devised to successfully identify the spatial distribution of butterfly stripes and spots and suppress incorrect information. Then, to overcome the recognition problem of butterfly spots with small inter-class variance, a Multi-scale sparse module (MSS) with multi-scale receptive fields is constructed. Finally, a Depthwise Separable Convolution module is employed to mitigate the parameter rise induced by the MSS network. In order to validate the model’s feasibility and effectiveness in a complex environment, we compared it to existing methods, and our proposed method achieved an average recognition accuracy of 91.88%, with an F1 value of 92.15%, indicating that it has a good effect on the fine-grained classification of butterflies and can be applied to their recognition to realize their protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边宇发布了新的文献求助10
1秒前
内向问旋发布了新的文献求助10
2秒前
2秒前
2秒前
Hanoi347应助陶醉的绮山采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
dada完成签到,获得积分10
3秒前
hhh发布了新的文献求助10
4秒前
4秒前
愉快的莹发布了新的文献求助10
4秒前
4秒前
孙泉发布了新的文献求助10
4秒前
金乌完成签到 ,获得积分10
5秒前
彭于晏应助吉不得采纳,获得10
5秒前
孤傲的静脉完成签到,获得积分10
5秒前
5秒前
远方完成签到 ,获得积分10
5秒前
华仔应助王艺霖采纳,获得10
5秒前
5秒前
昭昭如愿完成签到,获得积分20
5秒前
6秒前
luluzheng应助PDIF-CN2采纳,获得10
6秒前
火柴two发布了新的文献求助10
6秒前
7秒前
初夏的百褶裙完成签到,获得积分10
7秒前
cruel发布了新的文献求助10
7秒前
7秒前
ppat5012发布了新的文献求助10
7秒前
pengliao完成签到,获得积分10
7秒前
魏士博发布了新的文献求助10
7秒前
田所浩二完成签到 ,获得积分10
8秒前
9秒前
华仔应助zhdan采纳,获得10
9秒前
ghhhn完成签到,获得积分10
9秒前
11秒前
皮皮怪完成签到,获得积分10
11秒前
11秒前
FIB菜狗发布了新的文献求助10
11秒前
火柴two完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444