亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-driven trajectory-tracking in automated parking system via iterative learning compensation and model predictive control

迭代学习控制 弹道 控制理论(社会学) 模型预测控制 计算机科学 跟踪(教育) 跟踪误差 BitTorrent跟踪器 卡西姆 线性二次调节器 补偿(心理学) 过程(计算) 控制工程 人工智能 控制(管理) 工程类 操作系统 物理 天文 眼动 教育学 心理学 精神分析
作者
Shaoyu Song,Shukai Zhang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:237 (5): 1131-1145 被引量:2
标识
DOI:10.1177/09544070221081299
摘要

Automated parking system (APS) that explicitly considers the time efficiency of the motion has received large amounts of attention in recent years. Trajectory planning module in these APS delivered parking trajectory, which was expected to be precisely tracked by tracking module. However, the reference points of frequently used trackers were selected in the spatial domain, resulting in significant trajectory tracking errors with temporal information. In this paper, a tracking control method called ILC-MPC, which combined model predictive control (MPC) and iterative learning control (ILC), was proposed to improve the spatiotemporal tracking accuracy of the autonomous vehicle. ILC was utilized for longitudinal compensation using the error signal between historical and expected speed. Accordingly, the error model in the longitudinal direction was simplified to decrease the number of decision variables in MPC. Simulation experiments using CarSim were carried out to compare the proposed method with open-loop control, linear quadratic regulator (LQR), and pure MPC that had a similar computing time with ILC-MPC. ILC-MPC converged in a few iterations of the learning process and achieved the highest tracking accuracy in spatiotemporal domain among the mentioned methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
充电宝应助wanli采纳,获得10
21秒前
43秒前
桐桐应助jarrykim采纳,获得10
48秒前
1分钟前
1分钟前
1分钟前
John完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
jarrykim发布了新的文献求助10
2分钟前
大个应助啊呆哦采纳,获得10
2分钟前
2分钟前
啊呆哦完成签到,获得积分10
2分钟前
在水一方应助sidneyyang采纳,获得10
2分钟前
啊呆哦发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
吴南宛发布了新的文献求助10
4分钟前
sidneyyang完成签到,获得积分10
4分钟前
211JZH完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
sidneyyang发布了新的文献求助10
4分钟前
5分钟前
Ashao完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889441
求助须知:如何正确求助?哪些是违规求助? 4173461
关于积分的说明 12952082
捐赠科研通 3934886
什么是DOI,文献DOI怎么找? 2159100
邀请新用户注册赠送积分活动 1177437
关于科研通互助平台的介绍 1082254