Truthful User Recruitment for Cooperative Crowdsensing Task: A Combinatorial Multi-Armed Bandit Approach

计算机科学 后悔 任务(项目管理) 图形 约束(计算机辅助设计) 光学(聚焦) 预算约束 人机交互 理论计算机科学 机器学习 机械工程 光学 物理 工程类 新古典经济学 经济 管理
作者
Hengzhi Wang,Yongjian Yang,En Wang,Wenbin Liu,Yuanbo Xu,Jie Wu
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:22 (7): 4314-4331 被引量:19
标识
DOI:10.1109/tmc.2022.3153451
摘要

Mobile Crowdsensing (MCS) is a promising paradigm that recruits users to cooperatively perform a sensing task. When recruiting users, existing works mainly focus on selecting a group of users with the best objective ability, e.g., the user's probability or frequency of covering the task locations. However, we argue that the task completion effect depends not only on the user's objective ability, but also on their subjective collaboration likelihood with each other. Furthermore, even though we can find a well-behaved group of users in the single-round scenario, while in the multi-round scenario without enough prior knowledge, we still face the problem of recruiting previously well-behaved user groups (exploitation) or recruiting uncertain user groups (exploration). Additionally, we consider that each user has a different cost, and the platform recruits users under a cost budget; thus, the problem becomes more challenging: users may report fake costs to gain more profits. To address these problems, assuming that the user's information is known, we first convert the single-round user recruitment problem into the min-cut problem and propose a graph theory based algorithm to find the approximate solution. Then, in the multi-round scenario where the user's information is estimated from the previous rounds, to balance the trade-off between exploration and exploitation, we propose the multi-round User Recruitment strategy under the budget constraint based on the combinatorial Multi-armed Bandit model (URMB), which is proven to achieve a tight regret bound. Next, we propose a graph-based payment strategy to achieve truthfulness and individual rationality of users. Finally, extensive experiments on three real-world datasets show that URMB always outperforms the state-of-th-art strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
余好运完成签到,获得积分20
1秒前
Bio应助耕牛热采纳,获得50
1秒前
tingting发布了新的文献求助10
1秒前
完美世界应助林夏采纳,获得10
1秒前
小蘑菇应助H28G采纳,获得10
2秒前
2秒前
jeffyoung发布了新的文献求助10
2秒前
3秒前
乾乾完成签到,获得积分10
3秒前
ED应助李振博采纳,获得10
3秒前
文卿发布了新的文献求助10
3秒前
钙片儿完成签到,获得积分10
4秒前
清脆立果完成签到,获得积分10
5秒前
5秒前
粗犷的凌兰完成签到,获得积分10
5秒前
5秒前
panjunlu发布了新的文献求助10
5秒前
6秒前
www0717发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
7秒前
研友_ZlxxzZ完成签到,获得积分10
7秒前
归尘应助XS_QI采纳,获得10
7秒前
8秒前
Attempter完成签到,获得积分20
8秒前
Du发布了新的文献求助10
8秒前
钙片儿发布了新的文献求助10
8秒前
9秒前
大眼睛的草莓完成签到,获得积分10
9秒前
文卿完成签到,获得积分10
9秒前
9秒前
酷酷李可爱婕完成签到 ,获得积分10
10秒前
乐乐应助张阳采纳,获得10
11秒前
11秒前
11秒前
领导范儿应助珂小小采纳,获得10
11秒前
666完成签到,获得积分10
11秒前
假装有昵称完成签到,获得积分10
11秒前
11秒前
zyy完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582