A scalable artificial intelligence platform that automatically finds copy number variations (CNVs) in journal articles and transforms them into a database: CNV extraction, transformation, and loading AI (CNV-ETLAI)

拷贝数变化 计算机科学 人工智能 生物 遗传学 基因组 基因
作者
Jong-Moon Choi,Soomin Jeon,Doyun Kim,Michelle Chua,Synho Do
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:144: 105332-105332 被引量:1
标识
DOI:10.1016/j.compbiomed.2022.105332
摘要

Although copy number variations (CNVs) are infrequent, each anomaly is unique, and multiple CNVs can appear simultaneously. Growing evidence suggests that CNVs contribute to a wide range of diseases. When CNVs are detected, assessment of their clinical significance requires a thorough literature review. This process can be extremely time-consuming and may delay disease diagnosis. Therefore, we have developed CNV Extraction, Transformation, and Loading Artificial Intelligence (CNV-ETLAI), an innovative tool that allows experts to classify and interpret CNVs accurately and efficiently.We combined text, table, and image processing algorithms to develop an artificial intelligence platform that automatically extracts, transforms, and organizes CNV information into a database. To validate CNV-ETLAI, we compared its performance to ground truth datasets labeled by a human expert. In addition, we analyzed the CNV data, which was collected using CNV-ETLAI via a crowdsourcing approach.In comparison to a human expert, CNV-ETLAI improved CNV detection accuracy by 4% and performed the analysis 60 times faster. This performance can improve even further with upscaling of the CNV-ETLAI database as usage increases. 5,800 CNVs from 2,313 journal articles were collected. Total CNV frequency for the whole chromosome was highest for chromosome X, whereas CNV frequency per 1 Mb of genomic length was highest for chromosome 22.We have developed, tested, and shared CNV-ETLAI for research and clinical purposes (https://lmic.mgh.harvard.edu/CNV-ETLAI). Use of CNV-ETLAI is expected to ease and accelerate diagnostic classification and interpretation of CNVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123mmmm发布了新的文献求助10
1秒前
David完成签到 ,获得积分10
3秒前
woods发布了新的文献求助10
5秒前
时尚初南完成签到,获得积分10
7秒前
微笑完成签到,获得积分10
8秒前
ECCE发布了新的文献求助10
11秒前
琉璃岁月完成签到,获得积分10
11秒前
WHY完成签到 ,获得积分10
14秒前
风趣世开完成签到 ,获得积分10
14秒前
丘比特应助123mmmm采纳,获得10
15秒前
文艺白柏完成签到 ,获得积分10
18秒前
mmmmmMM完成签到,获得积分10
18秒前
shiney完成签到 ,获得积分0
20秒前
Zz完成签到 ,获得积分10
28秒前
Bminor完成签到,获得积分10
30秒前
脑洞疼应助海人采纳,获得10
30秒前
精明秋完成签到,获得积分10
31秒前
周宋完成签到 ,获得积分10
31秒前
潘道士完成签到 ,获得积分10
33秒前
困_zzzzzz完成签到 ,获得积分10
34秒前
croissante完成签到 ,获得积分10
34秒前
甜甜秋完成签到 ,获得积分10
36秒前
37秒前
呼呼呼等风来完成签到,获得积分10
39秒前
wintel完成签到,获得积分10
40秒前
大青山完成签到 ,获得积分10
40秒前
星海殇完成签到 ,获得积分0
41秒前
43秒前
CJ完成签到,获得积分10
45秒前
LDDD完成签到,获得积分10
45秒前
YUYUYU完成签到,获得积分10
46秒前
47秒前
独特的凝荷完成签到,获得积分10
49秒前
CJ发布了新的文献求助10
50秒前
53秒前
maque4004完成签到,获得积分10
54秒前
吱哦周完成签到,获得积分10
54秒前
火星上小土豆完成签到 ,获得积分10
55秒前
Apricity完成签到,获得积分10
58秒前
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176