A scalable artificial intelligence platform that automatically finds copy number variations (CNVs) in journal articles and transforms them into a database: CNV extraction, transformation, and loading AI (CNV-ETLAI)

拷贝数变化 计算机科学 人工智能 生物 遗传学 基因组 基因
作者
Jong-Moon Choi,Soomin Jeon,Doyun Kim,Michelle Chua,Synho Do
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105332-105332 被引量:1
标识
DOI:10.1016/j.compbiomed.2022.105332
摘要

Although copy number variations (CNVs) are infrequent, each anomaly is unique, and multiple CNVs can appear simultaneously. Growing evidence suggests that CNVs contribute to a wide range of diseases. When CNVs are detected, assessment of their clinical significance requires a thorough literature review. This process can be extremely time-consuming and may delay disease diagnosis. Therefore, we have developed CNV Extraction, Transformation, and Loading Artificial Intelligence (CNV-ETLAI), an innovative tool that allows experts to classify and interpret CNVs accurately and efficiently.We combined text, table, and image processing algorithms to develop an artificial intelligence platform that automatically extracts, transforms, and organizes CNV information into a database. To validate CNV-ETLAI, we compared its performance to ground truth datasets labeled by a human expert. In addition, we analyzed the CNV data, which was collected using CNV-ETLAI via a crowdsourcing approach.In comparison to a human expert, CNV-ETLAI improved CNV detection accuracy by 4% and performed the analysis 60 times faster. This performance can improve even further with upscaling of the CNV-ETLAI database as usage increases. 5,800 CNVs from 2,313 journal articles were collected. Total CNV frequency for the whole chromosome was highest for chromosome X, whereas CNV frequency per 1 Mb of genomic length was highest for chromosome 22.We have developed, tested, and shared CNV-ETLAI for research and clinical purposes (https://lmic.mgh.harvard.edu/CNV-ETLAI). Use of CNV-ETLAI is expected to ease and accelerate diagnostic classification and interpretation of CNVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
廉凌波发布了新的文献求助10
4秒前
勤奋梨愁发布了新的文献求助10
5秒前
5秒前
潘善若发布了新的文献求助10
7秒前
caicai完成签到,获得积分10
8秒前
CodeCraft应助廉凌波采纳,获得10
9秒前
11秒前
仁爱水之完成签到 ,获得积分10
11秒前
丫丫完成签到,获得积分10
13秒前
13秒前
13秒前
prime发布了新的文献求助10
14秒前
雨过天晴发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
天天快乐应助玛卡巴卡采纳,获得30
17秒前
xiaohu完成签到,获得积分10
17秒前
zm发布了新的文献求助10
19秒前
温暖的冰菱关注了科研通微信公众号
19秒前
程程发布了新的文献求助10
19秒前
乖猫要努力应助感动黄豆采纳,获得10
20秒前
潘善若发布了新的文献求助10
22秒前
anna发布了新的文献求助10
23秒前
24秒前
充电宝应助momo采纳,获得10
24秒前
勤奋梨愁完成签到,获得积分10
25秒前
summer完成签到,获得积分10
25秒前
26秒前
深情安青应助程程采纳,获得10
28秒前
张雯思发布了新的文献求助10
28秒前
格格完成签到 ,获得积分10
31秒前
31秒前
Hello应助下一秒采纳,获得10
34秒前
天天快乐应助科研通管家采纳,获得10
35秒前
赘婿应助科研通管家采纳,获得10
35秒前
搜集达人应助科研通管家采纳,获得10
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136