PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Linlin Ge,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘻嘻哈哈完成签到,获得积分10
2秒前
慕青应助懒羊羊大王采纳,获得10
3秒前
3秒前
LSC发布了新的文献求助30
3秒前
风一样的我完成签到 ,获得积分10
4秒前
4秒前
zxy完成签到,获得积分10
6秒前
BBrian发布了新的文献求助10
6秒前
雨的痕迹完成签到,获得积分10
7秒前
予安完成签到 ,获得积分10
7秒前
7秒前
qql发布了新的文献求助10
9秒前
Wang0102完成签到,获得积分10
9秒前
萨芬完成签到,获得积分10
9秒前
活泼傲之应助姜颖采纳,获得20
9秒前
9秒前
man发布了新的文献求助10
9秒前
10秒前
12秒前
12秒前
春雨发布了新的文献求助10
12秒前
一人独钓一江秋完成签到,获得积分10
14秒前
14秒前
小比熊完成签到,获得积分10
15秒前
Revovler完成签到,获得积分10
16秒前
英俊的铭应助麦克雷采纳,获得10
16秒前
19秒前
可爱的函函应助江楠采纳,获得10
21秒前
傻傻的哈密瓜完成签到,获得积分20
22秒前
11_23完成签到,获得积分10
24秒前
Akim应助康达采纳,获得10
26秒前
搜集达人应助麦克雷采纳,获得10
28秒前
29秒前
共享精神应助heheheli采纳,获得10
29秒前
Carly完成签到,获得积分20
29秒前
30秒前
adai完成签到,获得积分10
30秒前
31秒前
汉堡包应助四糸乃采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632944
求助须知:如何正确求助?哪些是违规求助? 4029107
关于积分的说明 12466293
捐赠科研通 3715327
什么是DOI,文献DOI怎么找? 2050021
邀请新用户注册赠送积分活动 1081627
科研通“疑难数据库(出版商)”最低求助积分说明 963954