PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Ge Liu,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:29
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小啊刘呀完成签到,获得积分10
刚刚
1秒前
huang发布了新的文献求助10
1秒前
JAYZHANG完成签到 ,获得积分10
3秒前
4秒前
4秒前
所所应助Lobectomy采纳,获得10
5秒前
小马甲应助hsing采纳,获得10
6秒前
烟花应助huangsi采纳,获得10
6秒前
Owen应助阿德采纳,获得10
8秒前
8秒前
赘婿应助李昕123采纳,获得10
9秒前
哈哈2022发布了新的文献求助30
9秒前
11秒前
科研通AI2S应助郑总采纳,获得10
13秒前
山水之乐发布了新的文献求助10
13秒前
熊大哥完成签到,获得积分20
14秒前
在水一方应助DAOXIAN采纳,获得10
14秒前
zzz完成签到,获得积分10
15秒前
15秒前
常小敏完成签到 ,获得积分10
16秒前
16秒前
孙鑫完成签到,获得积分10
17秒前
juan完成签到,获得积分10
20秒前
21秒前
Distance发布了新的文献求助10
21秒前
吃葡萄不吐葡萄皮完成签到,获得积分10
21秒前
22秒前
南风发布了新的文献求助10
23秒前
24秒前
24秒前
西红柿炒番茄应助juan采纳,获得30
25秒前
25秒前
sdfadf发布了新的文献求助30
26秒前
27秒前
LYZSh发布了新的文献求助10
27秒前
晓泽完成签到,获得积分10
28秒前
Ava应助陌上花开采纳,获得10
28秒前
WalkToSky完成签到,获得积分10
28秒前
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158178
求助须知:如何正确求助?哪些是违规求助? 2809497
关于积分的说明 7882282
捐赠科研通 2467982
什么是DOI,文献DOI怎么找? 1313837
科研通“疑难数据库(出版商)”最低求助积分说明 630558
版权声明 601943