PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Linlin Ge,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:42
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Mok采纳,获得10
刚刚
1秒前
2秒前
xun完成签到,获得积分10
3秒前
我是科研狗完成签到,获得积分10
4秒前
1280065188完成签到,获得积分20
5秒前
爆米花应助wen采纳,获得10
5秒前
纪予舟发布了新的文献求助10
5秒前
5秒前
5秒前
qingzhiwu完成签到,获得积分10
5秒前
6秒前
psylan应助impending采纳,获得10
6秒前
yyanxuemin919发布了新的文献求助10
8秒前
oon完成签到,获得积分10
9秒前
10秒前
10秒前
小熊完成签到,获得积分10
10秒前
10秒前
大模型应助喜悦的如娆采纳,获得10
11秒前
pluto应助yyy采纳,获得10
11秒前
晨丶完成签到,获得积分10
11秒前
纯真万言完成签到,获得积分10
12秒前
奕苼完成签到 ,获得积分10
12秒前
Owen应助甜蜜弱采纳,获得10
12秒前
susan完成签到,获得积分10
13秒前
Mok发布了新的文献求助10
15秒前
一棵树完成签到,获得积分10
16秒前
17秒前
19秒前
健忘可愁应助疯狂的聋五采纳,获得20
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得30
22秒前
李爱国应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841