已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Linlin Ge,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:42
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason0023发布了新的文献求助10
3秒前
搞笑煎蛋完成签到 ,获得积分10
3秒前
欢欢发布了新的文献求助10
4秒前
andrele发布了新的文献求助10
7秒前
8秒前
欣__完成签到 ,获得积分10
10秒前
阳静完成签到 ,获得积分10
10秒前
10秒前
ding应助沿途东行采纳,获得10
10秒前
ssc发布了新的文献求助10
11秒前
酷波er应助1206425219密采纳,获得10
11秒前
宁秘发布了新的文献求助10
13秒前
李健的小迷弟应助test采纳,获得10
13秒前
大头娃娃发布了新的文献求助10
15秒前
Owen应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
冯佳祥完成签到,获得积分10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得30
17秒前
大模型应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
17秒前
19秒前
宁秘完成签到,获得积分10
19秒前
所所应助辰叶采纳,获得10
19秒前
科研通AI2S应助EMC采纳,获得10
22秒前
Avvei完成签到,获得积分10
22秒前
22秒前
goldenrod完成签到,获得积分10
22秒前
明理楷瑞发布了新的文献求助10
23秒前
harmon完成签到,获得积分10
23秒前
24秒前
威武的雨筠完成签到 ,获得积分10
24秒前
25秒前
26秒前
桐桐应助andrele采纳,获得10
26秒前
突突leolo完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339