PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Linlin Ge,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力退休小博士完成签到 ,获得积分10
1秒前
橙子完成签到,获得积分10
2秒前
陈补天完成签到 ,获得积分10
3秒前
CipherSage应助慧灰huihui采纳,获得10
4秒前
乐观健柏完成签到,获得积分10
5秒前
7秒前
CodeCraft应助大橙子采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
jeeya完成签到,获得积分10
9秒前
11秒前
科目三应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
伦语发布了新的文献求助10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
xuzj应助科研通管家采纳,获得10
11秒前
xuzj应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
yull完成签到,获得积分10
12秒前
小巧书雪完成签到,获得积分10
15秒前
大大怪将军完成签到,获得积分10
16秒前
哈哈哈完成签到 ,获得积分0
16秒前
小怪完成签到,获得积分10
17秒前
爱吃泡芙完成签到,获得积分10
18秒前
白桃战士完成签到,获得积分10
19秒前
21秒前
qingchenwuhou完成签到 ,获得积分10
21秒前
XXX完成签到,获得积分10
22秒前
锡嘻完成签到 ,获得积分10
22秒前
23秒前
彗星入梦完成签到 ,获得积分10
23秒前
恋恋青葡萄完成签到,获得积分10
23秒前
隐形万言完成签到,获得积分10
25秒前
Time完成签到,获得积分10
25秒前
土木研学僧完成签到,获得积分10
26秒前
yjy完成签到 ,获得积分10
26秒前
A溶大美噶完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022