PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Linlin Ge,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助学术蠕虫采纳,获得10
1秒前
1秒前
叶子发布了新的文献求助10
2秒前
orangel完成签到,获得积分10
3秒前
半壶月色半边天完成签到 ,获得积分10
4秒前
tmpstlml发布了新的文献求助10
4秒前
5秒前
5秒前
不安饼干完成签到 ,获得积分10
7秒前
活泼的飞鸟完成签到,获得积分10
7秒前
8秒前
xuyun发布了新的文献求助10
8秒前
8秒前
zzcres完成签到,获得积分10
10秒前
eeeee完成签到 ,获得积分10
10秒前
乐观德地完成签到,获得积分10
11秒前
大个应助yf_zhu采纳,获得10
11秒前
llk发布了新的文献求助10
12秒前
一只大肥猫完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
14秒前
14秒前
科研通AI5应助GGG采纳,获得10
15秒前
15秒前
17秒前
Ann发布了新的文献求助20
17秒前
17秒前
buno应助duxinyue采纳,获得10
17秒前
xlj发布了新的文献求助10
18秒前
18秒前
可爱的函函应助zhen采纳,获得10
19秒前
研友_VZG7GZ应助dingdong采纳,获得10
20秒前
20秒前
李成恩完成签到 ,获得积分10
21秒前
心碎的黄焖鸡完成签到 ,获得积分10
21秒前
琪琪扬扬发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808