META-DDIE: predicting drug–drug interaction events with few-shot learning

药物数据库 计算机科学 药物与药物的相互作用 分类 管道(软件) 人工智能 代表(政治) 药品 机器学习 机制(生物学) 医学 药理学 政治 认识论 哲学 程序设计语言 法学 政治学
作者
Yifan Deng,Yang Qiu,Xinran Xu,Shichao Liu,Zhongfei Zhang,Shanfeng Zhu,Wen Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:49
标识
DOI:10.1093/bib/bbab514
摘要

Abstract Drug–drug interactions (DDIs) are one of the major concerns in pharmaceutical research, and a number of computational methods have been developed to predict whether two drugs interact or not. Recently, more attention has been paid to events caused by the DDIs, which is more useful for investigating the mechanism hidden behind the combined drug usage or adverse reactions. However, some rare events may only have few examples, hindering them from being precisely predicted. To address the above issues, we present a few-shot computational method named META-DDIE, which consists of a representation module and a comparing module, to predict DDI events. We collect drug chemical structures and DDIs from DrugBank, and categorize DDI events into hundreds of types using a standard pipeline. META-DDIE uses the structures of drugs as input and learns the interpretable representations of DDIs through the representation module. Then, the model uses the comparing module to predict whether two representations are similar, and finally predicts DDI events with few labeled examples. In the computational experiments, META-DDIE outperforms several baseline methods and especially enhances the predictive capability for rare events. Moreover, META-DDIE helps to identify the key factors that may cause DDI events and reveal the relationship among different events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DamienC发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
宁静完成签到 ,获得积分10
3秒前
3秒前
顾矜应助miao采纳,获得10
3秒前
lastsnow完成签到 ,获得积分10
4秒前
Azlne发布了新的文献求助10
5秒前
别嚣张发布了新的文献求助10
5秒前
xiaoyi完成签到,获得积分10
6秒前
7秒前
123456qi发布了新的文献求助10
7秒前
嘉欣发布了新的文献求助10
7秒前
蒋美桥发布了新的文献求助10
8秒前
9秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
小由同学完成签到,获得积分10
11秒前
shencheng完成签到,获得积分10
11秒前
伶俐的凉面应助小王梓采纳,获得10
12秒前
13秒前
Orange应助美妮采纳,获得10
15秒前
量子星尘发布了新的文献求助10
18秒前
xiaotian发布了新的文献求助10
18秒前
坚定的逍遥关注了科研通微信公众号
18秒前
123完成签到 ,获得积分10
21秒前
22秒前
莫羽倾尘发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
24秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430672
求助须知:如何正确求助?哪些是违规求助? 4543691
关于积分的说明 14188718
捐赠科研通 4462088
什么是DOI,文献DOI怎么找? 2446408
邀请新用户注册赠送积分活动 1437782
关于科研通互助平台的介绍 1414523