Abstract Lithium nitrate (LiNO 3 ) as an effective additive to construct stable solid electrolyte interface (SEI) is generally applied in ether‐based electrolytes, but its poor solubility in carbonate‐based electrolytes limits further application for Li metal batteries (LMBs). Therefore, an engineering of introducing NO 3 – into carbonate‐based electrolytes by synthesizing targeted covalent organic framework (EB‐COF:NO 3 ) to modify Li anode for incubating a reliable SEI is reported. Its unique structure not only facilitates the desolvation process of lithium ions (Li + ) to accelerate the transport of Li + , but also releases NO 3 – to form beneficial Li 3 N, LiN x O y species to in situ construct a stable SEI. With the application of EB‐COF:NO 3 , the cycling and rate performance of (50 µm) Li//LiFePO 4 full cell is comprehensively improved under the conditions of poor electrolyte and high loading, significantly increasing capacity retention from 14% to 94% after 200 cycles. And the high voltage Li//LiNi 0.5 Mn 1.5 O 4 full cell still demonstrates excellent cycling stability with the capacity retention of 92% after 600 cycles. Accordingly, this strategy shares a prospect for the application of covalent organic frameworks (COFs) to build a stable SEI for high‐energy‐density LMBs, and also broadens the application of LiNO 3 in carbonate‐based electrolytes.