Attention-Based DenseNet for Pneumonia Classification

联营 计算机科学 模式识别(心理学) 规范化(社会学) 人工智能 数据挖掘 人类学 社会学
作者
K. Wang,Ping Jiang,Jia Meng,X. Y. Jiang
出处
期刊:Irbm [Elsevier]
卷期号:43 (5): 479-485 被引量:19
标识
DOI:10.1016/j.irbm.2021.12.004
摘要

The structural complexity and uneven gray distribution of pneumonia images seriously affect the accuracy of pneumonia classification. As DenseNet has the characteristic of continuously transmitting the learned features of each layer backwards, which makes DenseNet not only reduce the model parameters, but also makes the local features learn better. Therefore, this paper proposes a method based on DenseNet to classify pneumonia. This method adds a feature channel attention block Squeeze and Excitation (SE) to DenseNet to highlight pneumonia information in feature maps, replaces the average pooling of the third transition layer in DenseNet with max-pooling to further focus on the lesion region, and by comparing several activation functions, we choose PReLU to avoid neuron death in the process of model training ultimately. Moreover, we preprocess the chest X-ray2017 dataset with data augmentation and normalization. The experimental results show that compared with DenseNet, our model's Accuracy, Precision, Recall and F1-score are improved by 2.4%, 2.0%, 1.8%, 1.8%, respectively, which can reach 92.8%, 92.6%, 96.2%, 94.3%. In this paper, we propose an attention-based DenseNet method for pneumonia classification, which make it pay more attention to the pneumonia areas to improve the classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
番茄肌肉完成签到,获得积分10
刚刚
Jasper应助芋圆不圆采纳,获得10
2秒前
SHADY592完成签到,获得积分10
2秒前
2秒前
www发布了新的文献求助10
3秒前
中中发布了新的文献求助10
3秒前
白云苍狗应助高源伯采纳,获得10
4秒前
SHADY592发布了新的文献求助10
4秒前
桐桐应助土豪的醉香采纳,获得10
4秒前
Jasper应助羊肉泡馍采纳,获得10
6秒前
6秒前
7秒前
7秒前
JamesPei应助D&L采纳,获得10
7秒前
7秒前
9秒前
香蕉觅云应助SHADY592采纳,获得10
10秒前
喜悦代双完成签到,获得积分10
10秒前
10秒前
11秒前
陆拾荒发布了新的文献求助10
11秒前
旺旺完成签到,获得积分10
12秒前
坦率灵槐应助纪汶欣采纳,获得20
12秒前
奋斗刚发布了新的文献求助10
12秒前
sincere-辉发布了新的文献求助10
13秒前
14秒前
15秒前
Owen应助lilili采纳,获得10
15秒前
15秒前
15秒前
非了个凡完成签到 ,获得积分10
16秒前
YEGE发布了新的文献求助10
16秒前
王威完成签到,获得积分10
17秒前
华仔应助不见木棉采纳,获得10
17秒前
17秒前
pp发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
今后应助卡萨丁那看啥采纳,获得10
19秒前
aben050361发布了新的文献求助10
20秒前
乐乐应助番茄鱼采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538