3D Md-Unet: A novel model of multi-dataset collaboration for medical image segmentation

计算机科学 图像(数学) 人工智能 分割 图像分割 计算机视觉 模式识别(心理学) 数据挖掘
作者
Manying Lin,Qingling Cai,Jun Zhou
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:492: 530-544 被引量:9
标识
DOI:10.1016/j.neucom.2021.12.045
摘要

• The multi-dataset collaborative network can process different organs or lesions for medical image segmentation at the same time. • The proposed adapter (SSA) can extract specific and common features from multiple classes within a dataset and various datasets. • The proposed adaptive weight update strategy can balance multi-dataset better, which is based on classes instead of voxels. • The dual-branched (DB) structure is more effective than the single one for multi-dataset collaboration. Image segmentation is widely used in the medical field. Convolutional neural network has become more diverse and effective in recent years. However, at present, most networks are designed for a single dataset (i.e., a single organ or target). The designed network is only suitable for a single dataset, and its accuracy is very different (especially small-size image datasets). In response to this problem, a collaborative network can be designed to simultaneously extract the specific and common features of a multi-dataset (i.e., multiple organs or targets). The network can be used for multi-dataset segmentation and help to balance the segmentation performance of different datasets, especially to improve the accuracy of small-size image datasets. By exploring the adapters modified by the convolution kernels, the adaptive weight update strategy and the network branched structure, the paper proposes a multi-dataset collaborative image segmentation network, called Md-Unet, which integrates a shared-specific adapter (SSA), an asymmetric similarity loss function with the proposed adaptive weight update strategy, and a dual-branch. Experimental results showed that compared with the baseline 3D U 2 Net, the accuracy of the module using the SSA was improved by 3.7%, using several loss functions with the proposed adaptive weight update strategy was improved by 0.64%–30.63%, and using dual-branch integrated architecture was improved by 17.47%. Moreover, Md-Unet had a significant improvement on small-size image datasets compared with single-dataset models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助毛毛虫采纳,获得10
1秒前
1秒前
碧蓝断天完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
乐观小蕊完成签到,获得积分10
4秒前
man完成签到,获得积分10
4秒前
4秒前
共享精神应助1234采纳,获得10
4秒前
SSSShawn发布了新的文献求助10
5秒前
5秒前
充电宝应助淡然的小萱采纳,获得10
5秒前
宁缺毋滥发布了新的文献求助10
7秒前
李健应助May采纳,获得10
7秒前
小章发布了新的文献求助10
7秒前
眯眯眼的宛白完成签到,获得积分20
8秒前
8秒前
玛卡巴卡发布了新的文献求助10
9秒前
胡昕跃发布了新的文献求助10
10秒前
wuli亲故完成签到,获得积分10
11秒前
11秒前
斑ban完成签到,获得积分10
11秒前
可靠的0发布了新的文献求助10
11秒前
甜甜的静柏完成签到 ,获得积分10
12秒前
12秒前
13秒前
15秒前
15秒前
Ricey应助焦立超采纳,获得10
16秒前
无花果应助晚来天欲雪采纳,获得10
16秒前
17秒前
SSSShawn完成签到,获得积分20
18秒前
18秒前
活力绮兰应助尚尚尚采纳,获得20
19秒前
20秒前
Joe发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
星禾吾发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976107
求助须知:如何正确求助?哪些是违规求助? 3520330
关于积分的说明 11202435
捐赠科研通 3256819
什么是DOI,文献DOI怎么找? 1798504
邀请新用户注册赠送积分活动 877642
科研通“疑难数据库(出版商)”最低求助积分说明 806496