3D Md-Unet: A novel model of multi-dataset collaboration for medical image segmentation

计算机科学 图像(数学) 人工智能 分割 图像分割 计算机视觉 模式识别(心理学) 数据挖掘
作者
Manying Lin,Qingling Cai,Jun Zhou
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:492: 530-544 被引量:9
标识
DOI:10.1016/j.neucom.2021.12.045
摘要

• The multi-dataset collaborative network can process different organs or lesions for medical image segmentation at the same time. • The proposed adapter (SSA) can extract specific and common features from multiple classes within a dataset and various datasets. • The proposed adaptive weight update strategy can balance multi-dataset better, which is based on classes instead of voxels. • The dual-branched (DB) structure is more effective than the single one for multi-dataset collaboration. Image segmentation is widely used in the medical field. Convolutional neural network has become more diverse and effective in recent years. However, at present, most networks are designed for a single dataset (i.e., a single organ or target). The designed network is only suitable for a single dataset, and its accuracy is very different (especially small-size image datasets). In response to this problem, a collaborative network can be designed to simultaneously extract the specific and common features of a multi-dataset (i.e., multiple organs or targets). The network can be used for multi-dataset segmentation and help to balance the segmentation performance of different datasets, especially to improve the accuracy of small-size image datasets. By exploring the adapters modified by the convolution kernels, the adaptive weight update strategy and the network branched structure, the paper proposes a multi-dataset collaborative image segmentation network, called Md-Unet, which integrates a shared-specific adapter (SSA), an asymmetric similarity loss function with the proposed adaptive weight update strategy, and a dual-branch. Experimental results showed that compared with the baseline 3D U 2 Net, the accuracy of the module using the SSA was improved by 3.7%, using several loss functions with the proposed adaptive weight update strategy was improved by 0.64%–30.63%, and using dual-branch integrated architecture was improved by 17.47%. Moreover, Md-Unet had a significant improvement on small-size image datasets compared with single-dataset models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助aaa采纳,获得10
1秒前
1秒前
珊珊完成签到,获得积分10
7秒前
赘婿应助南楼小阁主采纳,获得10
7秒前
zyyin完成签到,获得积分10
11秒前
kk应助珊珊采纳,获得10
11秒前
13秒前
研友_VZG7GZ应助ll采纳,获得10
13秒前
隐形曼青应助Justtry采纳,获得10
13秒前
14秒前
LongH2完成签到,获得积分10
14秒前
傲安完成签到 ,获得积分10
14秒前
liu发布了新的文献求助10
16秒前
16秒前
大个应助bixiuwu采纳,获得10
17秒前
xxxx完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
段晓坤发布了新的文献求助10
22秒前
不想起昵称完成签到 ,获得积分10
23秒前
www123qe发布了新的文献求助10
23秒前
香菜发布了新的文献求助10
24秒前
FFFFFF完成签到 ,获得积分10
24秒前
25秒前
赘婿应助小蘑菇采纳,获得10
25秒前
25秒前
27秒前
27秒前
29秒前
充电宝应助混沌采纳,获得10
29秒前
liu完成签到,获得积分10
31秒前
32秒前
8R60d8应助www123qe采纳,获得10
32秒前
33秒前
科研小辣鸡完成签到,获得积分10
33秒前
33秒前
33秒前
Ammr完成签到 ,获得积分10
34秒前
金鑫水淼发布了新的文献求助10
35秒前
十一发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971644
求助须知:如何正确求助?哪些是违规求助? 3516269
关于积分的说明 11181862
捐赠科研通 3251441
什么是DOI,文献DOI怎么找? 1795889
邀请新用户注册赠送积分活动 876131
科研通“疑难数据库(出版商)”最低求助积分说明 805246