3D Md-Unet: A novel model of multi-dataset collaboration for medical image segmentation

计算机科学 图像(数学) 人工智能 分割 图像分割 计算机视觉 模式识别(心理学) 数据挖掘
作者
Manying Lin,Qingling Cai,Jun Zhou
出处
期刊:Neurocomputing [Elsevier]
卷期号:492: 530-544 被引量:9
标识
DOI:10.1016/j.neucom.2021.12.045
摘要

• The multi-dataset collaborative network can process different organs or lesions for medical image segmentation at the same time. • The proposed adapter (SSA) can extract specific and common features from multiple classes within a dataset and various datasets. • The proposed adaptive weight update strategy can balance multi-dataset better, which is based on classes instead of voxels. • The dual-branched (DB) structure is more effective than the single one for multi-dataset collaboration. Image segmentation is widely used in the medical field. Convolutional neural network has become more diverse and effective in recent years. However, at present, most networks are designed for a single dataset (i.e., a single organ or target). The designed network is only suitable for a single dataset, and its accuracy is very different (especially small-size image datasets). In response to this problem, a collaborative network can be designed to simultaneously extract the specific and common features of a multi-dataset (i.e., multiple organs or targets). The network can be used for multi-dataset segmentation and help to balance the segmentation performance of different datasets, especially to improve the accuracy of small-size image datasets. By exploring the adapters modified by the convolution kernels, the adaptive weight update strategy and the network branched structure, the paper proposes a multi-dataset collaborative image segmentation network, called Md-Unet, which integrates a shared-specific adapter (SSA), an asymmetric similarity loss function with the proposed adaptive weight update strategy, and a dual-branch. Experimental results showed that compared with the baseline 3D U 2 Net, the accuracy of the module using the SSA was improved by 3.7%, using several loss functions with the proposed adaptive weight update strategy was improved by 0.64%–30.63%, and using dual-branch integrated architecture was improved by 17.47%. Moreover, Md-Unet had a significant improvement on small-size image datasets compared with single-dataset models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助hahaha采纳,获得10
刚刚
LZHWSND发布了新的文献求助10
刚刚
积极焦完成签到,获得积分10
刚刚
1秒前
1秒前
Kx发布了新的文献求助10
2秒前
3秒前
3秒前
啊好刀法你完成签到,获得积分10
4秒前
在意i完成签到,获得积分10
5秒前
晨晨发布了新的文献求助10
5秒前
asdzsx发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
Ava应助ccgod采纳,获得10
7秒前
fangpiupiu发布了新的文献求助10
8秒前
布曲完成签到,获得积分10
8秒前
直率的世平完成签到,获得积分20
8秒前
Amie完成签到,获得积分10
8秒前
我是老大应助Kx采纳,获得10
8秒前
8秒前
喝酸奶的艾鑫完成签到 ,获得积分10
8秒前
10秒前
11秒前
asdzsx完成签到,获得积分10
13秒前
14秒前
Beton_X完成签到,获得积分20
14秒前
拼搏蜗牛发布了新的文献求助10
15秒前
15秒前
LZHWSND发布了新的文献求助10
15秒前
可爱的函函应助Hannah17采纳,获得10
16秒前
杭璎完成签到,获得积分10
16秒前
18秒前
hyeseongu完成签到,获得积分20
19秒前
香蕉觅云应助学术蝗虫采纳,获得10
19秒前
lyn_zhou完成签到,获得积分10
20秒前
科研通AI2S应助abcdulla777采纳,获得10
21秒前
桂子完成签到,获得积分10
22秒前
111完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328