A two-step vibration-sound signal fusion method for weak fault feature detection in rolling bearing systems

振动 信号(编程语言) 声学 加权 断层(地质) 方位(导航) 信号处理 规范化(社会学) 叠加原理 a计权 计算机科学 工程类 故障检测与隔离 人工智能 电子工程 物理 数字信号处理 地质学 人类学 社会学 地震学 执行机构 量子力学 程序设计语言
作者
Guanchen Wu,Nengyu Yan,Kwang-Nam Choi,Hoe-Kyung Jung,Kerang Cao
出处
期刊:Advances in Mechanical Engineering [SAGE]
卷期号:13 (12): 168781402110671-168781402110671 被引量:7
标识
DOI:10.1177/16878140211067155
摘要

The vibration and sound signals get widely applications in fault diagnosis of rolling bearing systems, but the detection accuracy is unstable at different measuring positions. This paper puts forward a two-step vibration-sound signal fusion method, in which sound signal fusion and vibration-sound signal fusion are executed respectively. The sound signals are fused through weighting to the vibration signal to reduce the influence by measuring positions, and the phase difference is eliminated by a sliding window on the time axis. Then a second fusion between the vibration signal and sound signal is conducted after normalization and superposition, and the performance of two-step fusion is compared with the existing direct fusion. Results show that the two-step fusion provides a larger signal-to-noise ratio, and the amplitudes of characteristic frequencies are also higher. A cascaded bistable stochastic resonance system is applied in the post-processing of the fusion signal to make the signal features more clear, and it is proved that the fault detection effect has an obvious improvement after the whole process. This method provides a new approach for weak fault feature detection in vibration and sound signals, and is of great significance for the maintenance of rolling bearing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无花果应助sunzhiyu233采纳,获得10
1秒前
韭黄完成签到,获得积分20
1秒前
2秒前
诚c发布了新的文献求助10
2秒前
自然秋柳完成签到 ,获得积分10
2秒前
我是老大应助经法采纳,获得10
2秒前
默默的皮牙子应助经法采纳,获得10
2秒前
orixero应助经法采纳,获得10
2秒前
小马甲应助经法采纳,获得10
2秒前
柚子成精应助经法采纳,获得10
3秒前
小蘑菇应助经法采纳,获得10
3秒前
深情安青应助经法采纳,获得10
3秒前
李爱国应助经法采纳,获得10
3秒前
共享精神应助经法采纳,获得10
3秒前
yyyyyy完成签到 ,获得积分10
3秒前
LL完成签到,获得积分10
3秒前
ziyiziyi发布了新的文献求助10
4秒前
哈哈哈haha发布了新的文献求助40
4秒前
4秒前
啵乐乐完成签到,获得积分10
5秒前
哈哈完成签到,获得积分20
5秒前
6秒前
logic完成签到,获得积分10
6秒前
岁月轮回发布了新的文献求助10
6秒前
小离发布了新的文献求助10
6秒前
CodeCraft应助艺玲采纳,获得10
6秒前
chenjyuu完成签到,获得积分10
7秒前
韭黄发布了新的文献求助10
7秒前
7秒前
子车雁开完成签到,获得积分10
7秒前
8秒前
8秒前
故意的傲玉应助经法采纳,获得10
9秒前
上官若男应助经法采纳,获得10
9秒前
buno应助经法采纳,获得10
9秒前
1111应助经法采纳,获得10
9秒前
Lucas应助经法采纳,获得10
9秒前
Jasper应助经法采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759