Bio‐Inspired Computational Design of Vascularized Electrodes for High‐Performance Fast‐Charging Batteries Optimized by Deep Learning

材料科学 电极 多孔性 制作 计算机科学 计算 同种类的 反向 优化设计 纳米技术 算法 复合材料 机器学习 医学 化学 替代医学 物理 几何学 数学 物理化学 病理 热力学
作者
Chenxi Sui,Yao‐Yu Li,Xiuqiang Li,Genesis Higueros,Keyu Wang,Wanrong Xie,Po‐Chun Hsu
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:12 (6) 被引量:15
标识
DOI:10.1002/aenm.202103044
摘要

Abstract Slow ionic transport and high voltage drop (IR drop) of homogeneous porous electrodes are the critical causes of severe performance degradation of lithium‐ion batteries at high charging rates. Herein, it is numerically demonstrated that a bio‐inspired vascularized porous electrode can simultaneously solve these two problems by introducing low tortuous channels and graded porosity, which can be verified by porous electrode theory. To optimize the vasculature structural parameters, artificial neural networks are employed to accelerate the computation of possible structures with high accuracy. Furthermore, an inverse‐design searching library is compiled to find the optimal vascular structures under different industrial fabrication and design criteria. The prototype delivers a customizable package containing optimal geometric parameters and their uncertainty and sensitivity analysis. Finally, the full‐vascularized cell shows a 66% improvement in charging capacity compared to the traditional homogeneous cell under 3.2 C current density in a numerical simulation. This computational research provides an innovative methodology to solve the fast‐charging problem in batteries and broaden the applicability of deep learning algorithms to different scientific or engineering areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
3秒前
汉堡肉发布了新的文献求助10
5秒前
homer完成签到,获得积分0
6秒前
乐乐完成签到,获得积分10
6秒前
6秒前
jinyu发布了新的文献求助10
6秒前
wuaaaaa_L完成签到,获得积分10
6秒前
Hoolyshit发布了新的文献求助10
7秒前
dingyanxia完成签到,获得积分10
7秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
彼岸花开得正红完成签到,获得积分10
10秒前
李爱国应助arrebol采纳,获得10
11秒前
11秒前
11秒前
Stephen123发布了新的文献求助10
11秒前
13秒前
14秒前
awei发布了新的文献求助10
14秒前
wzm发布了新的文献求助30
15秒前
17秒前
jinyu完成签到,获得积分20
17秒前
18秒前
鱼粥很好发布了新的文献求助10
18秒前
在水一方应助原本山川采纳,获得20
18秒前
木子正文发布了新的文献求助10
20秒前
陈桉发布了新的文献求助10
21秒前
21秒前
漂亮夏兰发布了新的文献求助10
22秒前
237486494发布了新的文献求助10
22秒前
Xicuws完成签到,获得积分10
22秒前
23秒前
玛卡巴卡完成签到 ,获得积分10
23秒前
24秒前
葡萄柚绿茶完成签到,获得积分10
24秒前
深情不弱完成签到 ,获得积分10
24秒前
arrebol完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469254
求助须知:如何正确求助?哪些是违规求助? 4572366
关于积分的说明 14335510
捐赠科研通 4499281
什么是DOI,文献DOI怎么找? 2464986
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051