亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How to characterize a NDT method for weld inspection in battery cell manufacturing using deep learning

无损检测 废品 焊接 汽车工业 电池(电) 涡流 涡流检测 工程类 目视检查 原设备制造商 质量(理念) 汽车工程 人工智能 机械工程 计算机科学 电气工程 功率(物理) 医学 物理 量子力学 放射科 航空航天工程 操作系统 哲学 认识论
作者
Erik Rohkohl,M. Kraken,Malte Schönemann,Alexander Breuer,Christoph Herrmann
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (7-8): 4829-4843 被引量:10
标识
DOI:10.1007/s00170-021-08553-7
摘要

Battery cells are central components of electric vehicles. It is important for automotive original equipment manufacturer (OEM) to utilize high-quality battery cells to ensure high performance and safety of their vehicles. This results in the high demand for quality control measures and inspection methods in battery cell manufacturing. Particular relevant features of battery cells are welds for the internal electrical contact. Failures of these welds are often the cause for battery defects in the field and scrap during production. Consequently, there is a strong need to evaluate all welds during manufacturing. However, there is no established method that allows a quick, comprehensive, and cheap inline measurement of the weld quality. This paper presents a new eddy current-based method for nondestructive testing of seam welds as well as a machine learning approach for its validation. A deep learning model has been trained on eddy current measurements to predict results from a reference inspection method, in this case computer tomography. The results prove that eddy current measurements can be used to replicate data acquired by computer tomography, which means that eddy current measurements could be a suitable candidate for nondestructive 100 % inline inspection. More general, this study demonstrates how machine learning may help to get deeper insights into measurement results and to validate new nondestructive testing techniques whose detailed features are yet unknown. The presented evaluation method enables understanding the capabilities and the limits of a new technique and to extract hidden features from the data. In terms of defect segmentation, the trained model applied to an eddy current test data set achieves an accuracy of 93.7 %. Furthermore, the usage of machine learning allows to perform evaluations on artificial product samples with specific defects and features, which avoids the costly production physical samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求求好心人完成签到,获得积分10
2秒前
15秒前
35秒前
50秒前
欢呼靳完成签到 ,获得积分10
50秒前
52秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
瘦瘦以亦发布了新的文献求助10
1分钟前
小马甲应助瘦瘦以亦采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
小左完成签到,获得积分20
2分钟前
2分钟前
小左发布了新的文献求助10
2分钟前
2分钟前
ooops完成签到,获得积分10
2分钟前
2分钟前
SUNny完成签到 ,获得积分10
2分钟前
无花果应助瓜兮兮CYY采纳,获得10
2分钟前
2分钟前
3分钟前
Lan完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
ooops关注了科研通微信公众号
3分钟前
3分钟前
刘言发布了新的文献求助20
3分钟前
儒雅的十八完成签到,获得积分10
3分钟前
瓜兮兮CYY发布了新的文献求助10
3分钟前
kukudou2发布了新的文献求助30
3分钟前
ooops发布了新的文献求助10
3分钟前
顾矜应助杰老爷采纳,获得10
3分钟前
方沅完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4860155
关于积分的说明 15107455
捐赠科研通 4822794
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535928
关于科研通互助平台的介绍 1494160