亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How to characterize a NDT method for weld inspection in battery cell manufacturing using deep learning

无损检测 废品 焊接 汽车工业 电池(电) 涡流 涡流检测 工程类 目视检查 原设备制造商 质量(理念) 汽车工程 人工智能 机械工程 计算机科学 电气工程 功率(物理) 医学 物理 量子力学 放射科 航空航天工程 操作系统 哲学 认识论
作者
Erik Rohkohl,M. Kraken,Malte Schönemann,Alexander Breuer,Christoph Herrmann
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (7-8): 4829-4843 被引量:10
标识
DOI:10.1007/s00170-021-08553-7
摘要

Battery cells are central components of electric vehicles. It is important for automotive original equipment manufacturer (OEM) to utilize high-quality battery cells to ensure high performance and safety of their vehicles. This results in the high demand for quality control measures and inspection methods in battery cell manufacturing. Particular relevant features of battery cells are welds for the internal electrical contact. Failures of these welds are often the cause for battery defects in the field and scrap during production. Consequently, there is a strong need to evaluate all welds during manufacturing. However, there is no established method that allows a quick, comprehensive, and cheap inline measurement of the weld quality. This paper presents a new eddy current-based method for nondestructive testing of seam welds as well as a machine learning approach for its validation. A deep learning model has been trained on eddy current measurements to predict results from a reference inspection method, in this case computer tomography. The results prove that eddy current measurements can be used to replicate data acquired by computer tomography, which means that eddy current measurements could be a suitable candidate for nondestructive 100 % inline inspection. More general, this study demonstrates how machine learning may help to get deeper insights into measurement results and to validate new nondestructive testing techniques whose detailed features are yet unknown. The presented evaluation method enables understanding the capabilities and the limits of a new technique and to extract hidden features from the data. In terms of defect segmentation, the trained model applied to an eddy current test data set achieves an accuracy of 93.7 %. Furthermore, the usage of machine learning allows to perform evaluations on artificial product samples with specific defects and features, which avoids the costly production physical samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃洛璟完成签到,获得积分10
1秒前
一二完成签到,获得积分10
25秒前
桐桐应助hhhhhh采纳,获得10
41秒前
玛琳卡迪马完成签到,获得积分10
43秒前
Ava应助学术悍匪采纳,获得10
46秒前
50秒前
白潇潇完成签到,获得积分10
51秒前
Akim应助酷炫翠柏采纳,获得10
52秒前
55秒前
白潇潇发布了新的文献求助10
56秒前
56秒前
58秒前
学术悍匪发布了新的文献求助10
59秒前
jiugao发布了新的文献求助10
59秒前
1分钟前
优美香露发布了新的文献求助30
1分钟前
斯文败类应助优美香露采纳,获得80
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
CodeCraft应助学术悍匪采纳,获得10
1分钟前
2分钟前
学术悍匪完成签到,获得积分10
2分钟前
学术悍匪发布了新的文献求助10
2分钟前
2分钟前
优美香露发布了新的文献求助80
2分钟前
2分钟前
酷炫翠柏发布了新的文献求助10
2分钟前
万能图书馆应助tuyfytjt采纳,获得10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
2分钟前
asd1576562308完成签到 ,获得积分10
2分钟前
tuyfytjt发布了新的文献求助10
2分钟前
yhw完成签到,获得积分10
2分钟前
meow完成签到 ,获得积分10
3分钟前
科研通AI2S应助酷炫翠柏采纳,获得30
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
梵莫完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657943
求助须知:如何正确求助?哪些是违规求助? 4814668
关于积分的说明 15080640
捐赠科研通 4816211
什么是DOI,文献DOI怎么找? 2577199
邀请新用户注册赠送积分活动 1532206
关于科研通互助平台的介绍 1490776