亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How to characterize a NDT method for weld inspection in battery cell manufacturing using deep learning

无损检测 废品 焊接 汽车工业 电池(电) 涡流 涡流检测 工程类 目视检查 原设备制造商 质量(理念) 汽车工程 人工智能 机械工程 计算机科学 电气工程 功率(物理) 物理 放射科 操作系统 哲学 航空航天工程 认识论 医学 量子力学
作者
Erik Rohkohl,M. Kraken,Malte Schönemann,Alexander Breuer,Christoph Herrmann
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (7-8): 4829-4843 被引量:10
标识
DOI:10.1007/s00170-021-08553-7
摘要

Battery cells are central components of electric vehicles. It is important for automotive original equipment manufacturer (OEM) to utilize high-quality battery cells to ensure high performance and safety of their vehicles. This results in the high demand for quality control measures and inspection methods in battery cell manufacturing. Particular relevant features of battery cells are welds for the internal electrical contact. Failures of these welds are often the cause for battery defects in the field and scrap during production. Consequently, there is a strong need to evaluate all welds during manufacturing. However, there is no established method that allows a quick, comprehensive, and cheap inline measurement of the weld quality. This paper presents a new eddy current-based method for nondestructive testing of seam welds as well as a machine learning approach for its validation. A deep learning model has been trained on eddy current measurements to predict results from a reference inspection method, in this case computer tomography. The results prove that eddy current measurements can be used to replicate data acquired by computer tomography, which means that eddy current measurements could be a suitable candidate for nondestructive 100 % inline inspection. More general, this study demonstrates how machine learning may help to get deeper insights into measurement results and to validate new nondestructive testing techniques whose detailed features are yet unknown. The presented evaluation method enables understanding the capabilities and the limits of a new technique and to extract hidden features from the data. In terms of defect segmentation, the trained model applied to an eddy current test data set achieves an accuracy of 93.7 %. Furthermore, the usage of machine learning allows to perform evaluations on artificial product samples with specific defects and features, which avoids the costly production physical samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你才是小哭包完成签到 ,获得积分10
2秒前
小半完成签到 ,获得积分10
8秒前
充电宝应助prettyboymzl采纳,获得10
9秒前
科研通AI6应助misaka采纳,获得10
10秒前
砰砰完成签到 ,获得积分10
12秒前
19秒前
volunteer完成签到 ,获得积分10
20秒前
许三问完成签到 ,获得积分0
22秒前
深情安青应助娟娟采纳,获得10
24秒前
prettyboymzl发布了新的文献求助10
26秒前
33完成签到,获得积分0
29秒前
哑巴和喇叭完成签到 ,获得积分10
31秒前
英勇的爆米花完成签到,获得积分10
32秒前
HYT完成签到 ,获得积分10
33秒前
天涯明月刀完成签到,获得积分10
38秒前
Linus完成签到 ,获得积分10
42秒前
44秒前
45秒前
QianYang发布了新的文献求助10
49秒前
鲨鱼辣椒完成签到,获得积分20
49秒前
49秒前
以鹿之路发布了新的文献求助10
55秒前
感动的醉波完成签到,获得积分10
58秒前
59秒前
坚强素完成签到,获得积分10
1分钟前
1分钟前
闪闪的晓丝完成签到 ,获得积分10
1分钟前
香蕉觅云应助大宝君采纳,获得10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
王润萌完成签到,获得积分10
1分钟前
隐形萃完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
优美紫槐应助科研通管家采纳,获得10
1分钟前
李爱国应助QianYang采纳,获得10
1分钟前
俊逸的问薇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890100
捐赠科研通 4727293
什么是DOI,文献DOI怎么找? 2545926
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236