How to characterize a NDT method for weld inspection in battery cell manufacturing using deep learning

无损检测 废品 焊接 汽车工业 电池(电) 涡流 涡流检测 工程类 目视检查 原设备制造商 质量(理念) 汽车工程 人工智能 机械工程 计算机科学 电气工程 功率(物理) 物理 放射科 操作系统 哲学 航空航天工程 认识论 医学 量子力学
作者
Erik Rohkohl,M. Kraken,Malte Schönemann,Alexander Breuer,Christoph Herrmann
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:119 (7-8): 4829-4843 被引量:10
标识
DOI:10.1007/s00170-021-08553-7
摘要

Battery cells are central components of electric vehicles. It is important for automotive original equipment manufacturer (OEM) to utilize high-quality battery cells to ensure high performance and safety of their vehicles. This results in the high demand for quality control measures and inspection methods in battery cell manufacturing. Particular relevant features of battery cells are welds for the internal electrical contact. Failures of these welds are often the cause for battery defects in the field and scrap during production. Consequently, there is a strong need to evaluate all welds during manufacturing. However, there is no established method that allows a quick, comprehensive, and cheap inline measurement of the weld quality. This paper presents a new eddy current-based method for nondestructive testing of seam welds as well as a machine learning approach for its validation. A deep learning model has been trained on eddy current measurements to predict results from a reference inspection method, in this case computer tomography. The results prove that eddy current measurements can be used to replicate data acquired by computer tomography, which means that eddy current measurements could be a suitable candidate for nondestructive 100 % inline inspection. More general, this study demonstrates how machine learning may help to get deeper insights into measurement results and to validate new nondestructive testing techniques whose detailed features are yet unknown. The presented evaluation method enables understanding the capabilities and the limits of a new technique and to extract hidden features from the data. In terms of defect segmentation, the trained model applied to an eddy current test data set achieves an accuracy of 93.7 %. Furthermore, the usage of machine learning allows to perform evaluations on artificial product samples with specific defects and features, which avoids the costly production physical samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Connie发布了新的文献求助10
3秒前
聪聪发布了新的文献求助10
3秒前
4秒前
酷波er应助尊敬寒松采纳,获得10
4秒前
6秒前
77完成签到,获得积分10
7秒前
9秒前
粥粥应助wise111采纳,获得10
9秒前
jrxjzy完成签到 ,获得积分10
9秒前
9秒前
10秒前
人间枝头完成签到,获得积分10
11秒前
CodeCraft应助混子小白采纳,获得10
11秒前
kk完成签到,获得积分10
11秒前
yyh完成签到,获得积分10
14秒前
zl完成签到,获得积分10
14秒前
wang发布了新的文献求助10
14秒前
15秒前
简单的大哥完成签到,获得积分10
15秒前
尊敬寒松发布了新的文献求助10
16秒前
keysn完成签到,获得积分10
16秒前
17秒前
17秒前
子苓完成签到 ,获得积分10
19秒前
英姑应助栗子味汽水采纳,获得30
20秒前
20秒前
lijia3完成签到,获得积分10
20秒前
cc发布了新的文献求助30
20秒前
kk发布了新的文献求助10
20秒前
捏个小雪团完成签到 ,获得积分10
20秒前
norberta发布了新的文献求助10
21秒前
22秒前
桐桐应助ok12采纳,获得10
23秒前
混子小白发布了新的文献求助10
25秒前
Theprisoners应助小白采纳,获得20
25秒前
26秒前
26秒前
28秒前
聪聪完成签到 ,获得积分10
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629