How to characterize a NDT method for weld inspection in battery cell manufacturing using deep learning

无损检测 废品 焊接 汽车工业 电池(电) 涡流 涡流检测 工程类 目视检查 原设备制造商 质量(理念) 汽车工程 人工智能 机械工程 计算机科学 电气工程 功率(物理) 物理 放射科 操作系统 哲学 航空航天工程 认识论 医学 量子力学
作者
Erik Rohkohl,M. Kraken,Malte Schönemann,Alexander Breuer,Christoph Herrmann
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:119 (7-8): 4829-4843 被引量:10
标识
DOI:10.1007/s00170-021-08553-7
摘要

Battery cells are central components of electric vehicles. It is important for automotive original equipment manufacturer (OEM) to utilize high-quality battery cells to ensure high performance and safety of their vehicles. This results in the high demand for quality control measures and inspection methods in battery cell manufacturing. Particular relevant features of battery cells are welds for the internal electrical contact. Failures of these welds are often the cause for battery defects in the field and scrap during production. Consequently, there is a strong need to evaluate all welds during manufacturing. However, there is no established method that allows a quick, comprehensive, and cheap inline measurement of the weld quality. This paper presents a new eddy current-based method for nondestructive testing of seam welds as well as a machine learning approach for its validation. A deep learning model has been trained on eddy current measurements to predict results from a reference inspection method, in this case computer tomography. The results prove that eddy current measurements can be used to replicate data acquired by computer tomography, which means that eddy current measurements could be a suitable candidate for nondestructive 100 % inline inspection. More general, this study demonstrates how machine learning may help to get deeper insights into measurement results and to validate new nondestructive testing techniques whose detailed features are yet unknown. The presented evaluation method enables understanding the capabilities and the limits of a new technique and to extract hidden features from the data. In terms of defect segmentation, the trained model applied to an eddy current test data set achieves an accuracy of 93.7 %. Furthermore, the usage of machine learning allows to perform evaluations on artificial product samples with specific defects and features, which avoids the costly production physical samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
放青松完成签到,获得积分10
1秒前
勤恳的鲂完成签到 ,获得积分10
2秒前
2秒前
3秒前
小医发布了新的文献求助10
3秒前
浮游应助中国大陆采纳,获得10
4秒前
4秒前
乐乐应助中国大陆采纳,获得10
4秒前
吉他平方完成签到,获得积分10
5秒前
5秒前
6秒前
xie发布了新的文献求助10
6秒前
爵士黄瓜完成签到,获得积分10
6秒前
慢慢人完成签到,获得积分10
6秒前
7秒前
Li发布了新的文献求助10
7秒前
8秒前
8秒前
黄卓智完成签到,获得积分20
10秒前
lixioani219发布了新的文献求助10
10秒前
11秒前
吉他平方发布了新的文献求助10
11秒前
11秒前
爵士黄瓜发布了新的文献求助10
12秒前
12秒前
乐乐应助陈秋采纳,获得10
13秒前
曾经耳机发布了新的文献求助30
14秒前
调皮戒指完成签到,获得积分20
15秒前
虚心的冷松完成签到,获得积分10
15秒前
xie完成签到,获得积分10
15秒前
黄卓智发布了新的文献求助10
15秒前
科研通AI5应助lixioani219采纳,获得10
16秒前
16秒前
jyy完成签到 ,获得积分10
16秒前
感动咖啡完成签到,获得积分10
17秒前
肖肖肖完成签到 ,获得积分10
19秒前
顾矜应助唠叨的以冬采纳,获得10
20秒前
哇塞完成签到,获得积分10
20秒前
小泉发布了新的文献求助30
21秒前
华伟他die完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062030
求助须知:如何正确求助?哪些是违规求助? 4285935
关于积分的说明 13355964
捐赠科研通 4103820
什么是DOI,文献DOI怎么找? 2246990
邀请新用户注册赠送积分活动 1252642
关于科研通互助平台的介绍 1183592