Detection of pediatric obstructive sleep apnea using a multilayer perceptron model based on single-channel oxygen saturation or clinical features

接收机工作特性 阻塞性睡眠呼吸暂停 多导睡眠图 切断 医学 诊断试验中的似然比 呼吸不足 呼吸暂停 多层感知器 内科学 人工智能 人工神经网络 计算机科学 物理 量子力学
作者
Yunxiao Wu,Yifan Jia,Xiaolin Ning,Zhifei Xu,Dennis Rosen
出处
期刊:Methods [Elsevier]
卷期号:204: 361-367 被引量:6
标识
DOI:10.1016/j.ymeth.2022.04.017
摘要

This study was performed to develop and evaluate a method of detecting pediatric obstructive sleep apnea (OSA) using a multilayer perceptron (MLP) model based on single-channel nocturnal oxygen saturation (SpO2) with or without clinical data. Polysomnography data for 888 children with OSA and 417 unaffected children were included. An MLP model was proposed based on the features obtained from SpO2 and combined features of SpO2 and clinical data to screen symptomatic children for OSA. The performance of the overall classification was evaluated with the receiver operating characteristics curve and the metrics of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR−), and accuracy. The sensitivity, specificity, PPV, NPV, LR+, LR−, and accuracy of the MLP model for SpO2 of an obstructive apnea–hypopnea index (OAHI) cutoff value of 1, 5, and 10 were 0.62–0.96, 0.11–0.97, 0.70–0.81, 0.55–0.93, 1.08–21.0, 0.39–0.39, and 0.69–0.91, respectively. The area under the receiver operating characteristics curve of an OAHI cutoff value of 1, 5, and 10 was 0.720, 0.842, and 0.922, respectively. After adding the clinical data of age, sex, body mass index, weight category, adenoid grade, or tonsil scale, the performance of the MLP model was basically at the same level as only single-channel SpO2. Application of this MLP model using single-channel SpO2 in children with snoring has high accuracy in the diagnosis of moderate to severe OSA but a poor effect in the diagnosis of mild OSA. The combination of clinical data did not significantly improve the diagnostic performance of the MLP model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白石杏完成签到,获得积分10
1秒前
ll200207完成签到,获得积分10
2秒前
凶狠的乐巧完成签到,获得积分10
2秒前
Lin发布了新的文献求助10
3秒前
三七发布了新的文献求助10
3秒前
3秒前
鸣隐发布了新的文献求助10
3秒前
4秒前
4秒前
软豆皮完成签到,获得积分10
4秒前
lan完成签到,获得积分10
5秒前
英姑应助松松果采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
chillin发布了新的文献求助10
7秒前
zhui发布了新的文献求助10
7秒前
薪炭林完成签到,获得积分10
8秒前
Rrr发布了新的文献求助10
8秒前
8秒前
SCISSH完成签到 ,获得积分10
8秒前
FEI发布了新的文献求助10
9秒前
科研通AI5应助奔奔采纳,获得10
10秒前
星辰大海应助八八采纳,获得20
10秒前
gaga发布了新的文献求助10
10秒前
木子加y发布了新的文献求助10
10秒前
大大泡泡完成签到,获得积分10
11秒前
852应助zhui采纳,获得10
12秒前
芒果发布了新的文献求助10
12秒前
13秒前
前百年253完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
xiaoguai完成签到 ,获得积分10
15秒前
甜蜜晓绿发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794