A gene-to-patient approach uplifts novel disease gene discovery and identifies 18 putative novel disease genes

基因 遗传学 损失函数 生物 基因组 外显子组测序 计算生物学 外显子组 功能(生物学) 表型 基因预测 疾病 医学 病理
作者
Eleanor G. Seaby,Damian Smedley,Ana Lisa Taylor Tavares,Helen Brittain,Richard H. van Jaarsveld,Diana Baralle,Heidi L. Rehm,Anne O’Donnell‐Luria,Sarah Ennis
出处
期刊:Genetics in Medicine [Springer Nature]
卷期号:24 (8): 1697-1707 被引量:18
标识
DOI:10.1016/j.gim.2022.04.019
摘要

Exome and genome sequencing have drastically accelerated novel disease gene discoveries. However, discovery is still hindered by myriad variants of uncertain significance found in genes of undetermined biological function. This necessitates intensive functional experiments on genes of equal predicted causality, leading to a major bottleneck.We apply the loss-of-function observed/expected upper-bound fraction metric of intolerance to gene inactivation to curate a list of predicted haploinsufficient disease genes. Using data from the 100,000 Genomes Project, we adopt a gene-to-patient approach that matches de novo loss-of-function variants in constrained genes to patients with rare disease. Through large-scale aggregation of data, we reduce excess analytical noise currently hindering novel discoveries.Results from 13,949 trios revealed 643 rare, de novo predicted loss-of-function events filtered from 1044 loss-of-function observed/expected upper-bound fraction-constrained genes. A total of 168 variants occurred within 126 genes without a known disease-gene relationship. Of these, 27 genes had >1 kindred affected, and for 18 of these genes, multiple kindreds had overlapping phenotypes. Two years after initial analysis, 11 of 18 (61%) of these genes have been independently published as novel disease gene discoveries.Using large cohorts and adopting gene-based approaches can rapidly and objectively accelerate dominantly inherited novel gene discovery by targeting the most appropriate genes for functional validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rosalieshi应助科研通管家采纳,获得30
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
小星星应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
彭于彦祖应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
赘婿应助儒雅沛凝采纳,获得30
2秒前
老李完成签到,获得积分10
3秒前
biackgao完成签到,获得积分10
3秒前
naplzp发布了新的文献求助10
3秒前
ChenLi完成签到,获得积分10
3秒前
学渣完成签到,获得积分10
4秒前
wsf发布了新的文献求助10
4秒前
微笑夏瑶发布了新的文献求助10
5秒前
小C发布了新的文献求助10
5秒前
lpj完成签到,获得积分10
5秒前
Jasper应助小太阳红红火火采纳,获得10
5秒前
无限数据线完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
充电宝应助苗条青文采纳,获得10
7秒前
7秒前
认真无敌完成签到 ,获得积分10
8秒前
naplzp完成签到,获得积分10
9秒前
9秒前
9秒前
lllllll完成签到,获得积分10
9秒前
左丘蛟凤完成签到,获得积分10
9秒前
所所应助干净的老虎采纳,获得10
10秒前
小智完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760