Adaptive Multiobjective Memetic Fuzzy Clustering Algorithm for Remote Sensing Imagery

模因算法 聚类分析 计算机科学 人口 多目标优化 进化算法 模糊聚类 人工智能 数据挖掘 模糊逻辑 模式识别(心理学) 机器学习 社会学 人口学
作者
Ailong Ma,Yanfei Zhong,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:53 (8): 4202-4217 被引量:68
标识
DOI:10.1109/tgrs.2015.2393357
摘要

Due to the intrinsic complexity of remote sensing images and the lack of prior knowledge, clustering for remote sensing images has always been one of the most challenging tasks in remote sensing image processing. Recently, clustering methods for remote sensing images have often been transformed into multiobjective optimization problems, making them more suitable for complex remote sensing image clustering. However, the performance of the multiobjective clustering methods is often influenced by their optimization capability. To resolve this problem, this paper proposes an adaptive multiobjective memetic fuzzy clustering algorithm (AFCMOMA) for remote sensing imagery. In AFCMOMA, a multiobjective memetic clustering framework is devised to optimize the two objective functions, i.e., Jm and the Xie-Beni (XB) index. One challenging task for memetic algorithms is how to balance the local and global search capabilities. In AFCMOMA, an adaptive strategy is used, which can adaptively achieve a balance between them, based on the statistical characteristic of the objective function values. In addition, in the multiobjective memetic framework, in order to acquire more individuals with high quality, a new population update strategy is devised, in which the updated population is composed of individuals generated in both the local and global searches. Finally, to evaluate the proposed AFCMOMA algorithm, experiments using three remote sensing images were conducted, which confirmed the effectiveness of the proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐阳d完成签到,获得积分10
刚刚
在水一方应助周新运采纳,获得10
刚刚
小二郎应助缓慢凝云采纳,获得10
刚刚
xiang发布了新的文献求助10
刚刚
刚刚
li完成签到,获得积分10
刚刚
tassssadar完成签到,获得积分10
1秒前
ZHANG完成签到,获得积分10
1秒前
glucose发布了新的文献求助10
1秒前
小二郎应助zz采纳,获得10
1秒前
Sonify完成签到,获得积分10
2秒前
2秒前
OLAY完成签到,获得积分10
2秒前
俏皮的忆南关注了科研通微信公众号
3秒前
key完成签到,获得积分10
3秒前
难道我是西谷西完成签到,获得积分10
4秒前
Mob发布了新的文献求助50
4秒前
会张蘑菇完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI6应助虾尾采纳,获得10
4秒前
5秒前
Yangaaa发布了新的文献求助10
5秒前
5秒前
5秒前
养咩咩完成签到,获得积分10
5秒前
karyoter发布了新的文献求助20
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Sweet发布了新的文献求助10
7秒前
CipherSage应助水123采纳,获得10
8秒前
8秒前
在水一方应助YY采纳,获得10
8秒前
章鱼哥完成签到,获得积分10
8秒前
星辰大海应助牙瓜采纳,获得10
9秒前
大模型应助peterwang35采纳,获得10
9秒前
王佳豪发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647752
求助须知:如何正确求助?哪些是违规求助? 4774203
关于积分的说明 15041173
捐赠科研通 4806669
什么是DOI,文献DOI怎么找? 2570374
邀请新用户注册赠送积分活动 1527179
关于科研通互助平台的介绍 1486224