雅卡索引
皮尔逊积矩相关系数
计算机科学
基因选择
数据挖掘
计算生物学
相似性(几何)
相关系数
选择(遗传算法)
索引(排版)
联想(心理学)
度量(数据仓库)
相关性
基因
统计
人工智能
生物
数学
遗传学
机器学习
模式识别(心理学)
哲学
认识论
万维网
图像(数学)
微阵列分析技术
基因表达
几何学
作者
Juan I. Fuxman Bass,Alos Diallo,J. Daniel Nelson,Juan M Soto,Chad L. Myers,Albertha J.M. Walhout
出处
期刊:Nature Methods
[Springer Nature]
日期:2013-11-26
卷期号:10 (12): 1169-1176
被引量:236
摘要
This Perspective describes statistical measures commonly used to quantify whether nodes in biological networks have similar interaction profiles and discusses which indices are best suited for specific tasks. Biological networks can be used to functionally annotate genes on the basis of interaction-profile similarities. Metrics known as association indices can be used to quantify interaction-profile similarity. We provide an overview of commonly used association indices, including the Jaccard index and the Pearson correlation coefficient, and compare their performance in different types of analyses of biological networks. We introduce the Guide for Association Index for Networks (GAIN), a web tool for calculating and comparing interaction-profile similarities and defining modules of genes with similar profiles.
科研通智能强力驱动
Strongly Powered by AbleSci AI