Learning science in a virtual reality application: The impacts of animated-virtual actors’ visual complexity

感知 计算机科学 情感(语言学) 虚拟现实 心理学 质量(理念) 认知 绘图 学习迁移 视觉感受 多媒体 认知心理学 培训转移 人机交互 发展心理学 沟通 计算机图形学(图像) 哲学 神经科学 认识论
作者
Iwan Kartiko,Manolya Kavakli,Ken Cheng
出处
期刊:Computers & education [Elsevier]
卷期号:55 (2): 881-891 被引量:77
标识
DOI:10.1016/j.compedu.2010.03.019
摘要

As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have shown that visual complexity correlates with presence and may increase the perceived affective quality of the virtual world, towards an optimal experience or flow. Increasing these in VR applications may promote enjoyment and higher cognitive engagement for better learning outcomes. While visually complex materials could be motivating and pleasing to attend to, would they affect learning adversely? We developed a series of VR presentations to teach second-year psychology students about the navigational behaviour of Cataglyphis ants with flat, cartoon, or lifelike AVAs. To assess learning outcomes, we used Program Ratings, which measured perception of learning and perceived difficulty, and retention and transfer tests. The results from 200 students did not reveal any significant differences in presence, perceived affective quality, or learning outcomes as a function of the AVA's visual complexity. While the results showed positive correlations between presence, perceived affective quality and perception of learning, none of these correlates with perceived difficulty, retention, or transfer scores. Nevertheless, our simulation produced significant improvements on retention and transfer scores in all conditions. We discuss possible explanations and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力沧海完成签到,获得积分10
1秒前
_Forelsket_完成签到,获得积分10
1秒前
1秒前
mxtsusan完成签到,获得积分10
1秒前
2秒前
coollzl完成签到 ,获得积分10
2秒前
牛马完成签到,获得积分10
3秒前
Cloudyyy完成签到,获得积分10
3秒前
3秒前
司马绮山完成签到,获得积分10
3秒前
huihui265发布了新的文献求助10
3秒前
4秒前
puzhongjiMiQ完成签到,获得积分10
4秒前
比格大王完成签到 ,获得积分10
6秒前
卿卿完成签到 ,获得积分10
6秒前
6秒前
夏艳平完成签到 ,获得积分10
6秒前
puzhongjiMiQ发布了新的文献求助10
6秒前
caopeili完成签到 ,获得积分10
6秒前
Cloudyyy发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
菠萝汁完成签到,获得积分10
7秒前
zpl完成签到 ,获得积分10
8秒前
8秒前
ww完成签到,获得积分10
9秒前
amber完成签到,获得积分10
9秒前
biofresh完成签到,获得积分10
9秒前
DODO完成签到,获得积分10
9秒前
orixero应助舒心访文采纳,获得10
10秒前
酒酿是也完成签到 ,获得积分10
10秒前
June完成签到,获得积分10
10秒前
Manho完成签到,获得积分10
10秒前
11秒前
11秒前
neo完成签到,获得积分10
11秒前
彩色的蓝天完成签到,获得积分10
12秒前
koi完成签到,获得积分10
12秒前
周杰完成签到,获得积分10
12秒前
12秒前
清秀凡霜完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664846
求助须知:如何正确求助?哪些是违规求助? 4871596
关于积分的说明 15109131
捐赠科研通 4823659
什么是DOI,文献DOI怎么找? 2582486
邀请新用户注册赠送积分活动 1536484
关于科研通互助平台的介绍 1495036