Learning science in a virtual reality application: The impacts of animated-virtual actors’ visual complexity

感知 计算机科学 情感(语言学) 虚拟现实 心理学 质量(理念) 认知 绘图 学习迁移 视觉感受 多媒体 认知心理学 培训转移 人机交互 发展心理学 沟通 计算机图形学(图像) 哲学 神经科学 认识论
作者
Iwan Kartiko,Manolya Kavakli,Ken Cheng
出处
期刊:Computers & education [Elsevier]
卷期号:55 (2): 881-891 被引量:77
标识
DOI:10.1016/j.compedu.2010.03.019
摘要

As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have shown that visual complexity correlates with presence and may increase the perceived affective quality of the virtual world, towards an optimal experience or flow. Increasing these in VR applications may promote enjoyment and higher cognitive engagement for better learning outcomes. While visually complex materials could be motivating and pleasing to attend to, would they affect learning adversely? We developed a series of VR presentations to teach second-year psychology students about the navigational behaviour of Cataglyphis ants with flat, cartoon, or lifelike AVAs. To assess learning outcomes, we used Program Ratings, which measured perception of learning and perceived difficulty, and retention and transfer tests. The results from 200 students did not reveal any significant differences in presence, perceived affective quality, or learning outcomes as a function of the AVA's visual complexity. While the results showed positive correlations between presence, perceived affective quality and perception of learning, none of these correlates with perceived difficulty, retention, or transfer scores. Nevertheless, our simulation produced significant improvements on retention and transfer scores in all conditions. We discuss possible explanations and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jero完成签到 ,获得积分10
1秒前
十七完成签到 ,获得积分10
1秒前
2秒前
淡然冬灵发布了新的文献求助80
3秒前
漫天飞雪_寒江孤影完成签到,获得积分10
4秒前
5秒前
5秒前
Self完成签到,获得积分10
6秒前
orixero应助直率青寒采纳,获得10
7秒前
暗中讨饭完成签到,获得积分10
7秒前
俄而完成签到 ,获得积分10
8秒前
等待的剑身完成签到,获得积分10
8秒前
8秒前
SY发布了新的文献求助10
9秒前
corbel完成签到,获得积分10
9秒前
10秒前
11秒前
michelle完成签到,获得积分10
11秒前
13秒前
雷红完成签到,获得积分20
14秒前
郑春梅发布了新的文献求助10
14秒前
娜一完成签到 ,获得积分10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
Orange应助陈补天采纳,获得10
21秒前
21秒前
CipherSage应助SY采纳,获得10
24秒前
k123456应助聋哑时代采纳,获得10
25秒前
26秒前
侯谋完成签到,获得积分10
27秒前
28秒前
杨荣完成签到,获得积分10
29秒前
30秒前
31秒前
李思雨发布了新的文献求助10
32秒前
33秒前
34秒前
贪玩若烟完成签到,获得积分10
35秒前
YuxiLuo完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425374
求助须知:如何正确求助?哪些是违规求助? 4539467
关于积分的说明 14168144
捐赠科研通 4457004
什么是DOI,文献DOI怎么找? 2444375
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740