Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants

环境化学 焦炭 无组织排放 微粒 多环芳烃 化学 环境科学 粒子(生态学) 碳氢化合物 温室气体 有机化学 地质学 海洋学
作者
Ling Mu,Lin Peng,Xiaofeng Liu,Chongfang Song,Huiling Bai,Jianqiang Zhang,Dongmei Hu,Qiusheng He,Fan Li
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:83: 202-210 被引量:59
标识
DOI:10.1016/j.atmosenv.2013.09.043
摘要

Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. However, there is little information available on the emission characteristics of PAHs from fugitive emission during coking, especially on the specific processes dominating the gas–particle partitioning of PAHs. In this study, emission characteristics and gas–particle partitioning of PAHs from fugitive emission in four typical coke plants (CPs) with different scales and techniques were investigated. The average concentrations of total PAHs from fugitive emission at CP2, CP3 and CP4 (stamp charging) were 146.98, 31.82, and 35.20 μg m−3, which were 13.38-, 2.90- and 3.20-fold higher, respectively, than those at CP1 (top charging, 10.98 μg m−3). Low molecular weight PAHs with 2–3 rings made up 75.3% of the total PAHs on average, and the contributions of particulate PAH to the total BaP equivalent concentrations (BaPeq) in each plant were significantly higher than the corresponding contributions to the total PAH mass concentrations. The calculated total BaPeq concentrations varied from 0.19 to 10.86 μg m−3 with an average of 3.14 μg m−3, and more efficient measures to control fugitive emission in coke plants should be employed to prevent or reduce the health risk to workers. Absorption into organic matter dominated the gas–particle partitioning for most of the PAHs including PhA, FluA, Chr, BbF, BkF and BaP, while adsorption on elemental carbon appeared to play a dominant role for AcPy, AcP and Flu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天向上完成签到,获得积分10
刚刚
刚刚
长孙巧凡发布了新的文献求助10
1秒前
危机的夏寒完成签到,获得积分10
1秒前
luo完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
迅速海云完成签到,获得积分10
3秒前
fantexi113发布了新的文献求助10
3秒前
yf发布了新的文献求助10
3秒前
tx完成签到,获得积分10
3秒前
4秒前
4秒前
小石发布了新的文献求助10
4秒前
wangtp完成签到,获得积分20
4秒前
5秒前
高大一一完成签到,获得积分10
5秒前
5秒前
111发布了新的文献求助10
5秒前
丁水水完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
SciGPT应助Beloster采纳,获得10
7秒前
7秒前
7秒前
跳跳妈妈发布了新的文献求助10
8秒前
Su发布了新的文献求助10
8秒前
8秒前
yflag完成签到,获得积分10
9秒前
9秒前
万芳完成签到,获得积分10
10秒前
文艺的立果发布了新的文献求助150
10秒前
10秒前
洛luo完成签到,获得积分10
10秒前
lin完成签到,获得积分10
10秒前
Wu完成签到,获得积分10
10秒前
汉堡包应助hww采纳,获得10
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639