表位
子序列
计算机科学
序列(生物学)
相似性(几何)
计算生物学
核(代数)
变量(数学)
B细胞
特征(语言学)
支持向量机
人工智能
算法
模式识别(心理学)
数学
抗原
生物
抗体
组合数学
遗传学
图像(数学)
数学分析
哲学
语言学
有界函数
作者
Yasser EL‐Manzalawy,Drena Dobbs,Vasant Honavar
出处
期刊:PubMed
日期:2008-01-01
被引量:76
摘要
Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting B-cell epitopes are highly desirable. We explore two machine learning approaches for predicting flexible length linear B-cell epitopes. The first approach utilizes four sequence kernels for determining a similarity score between any arbitrary pair of variable length sequences. The second approach utilizes four different methods of mapping a variable length sequence into a fixed length feature vector. Based on our empirical comparisons, we propose FBCPred, a novel method for predicting flexible length linear B-cell epitopes using the subsequence kernel. Our results demonstrate that FBCPred significantly outperforms all other classifiers evaluated in this study. An implementation of FBCPred and the datasets used in this study are publicly available through our linear B-cell epitope prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.
科研通智能强力驱动
Strongly Powered by AbleSci AI