Krylov子空间
广义最小残差法
数学
特征向量
线性系统
应用数学
舒尔补语
乘法(音乐)
趋同(经济学)
子空间拓扑
迭代法
符号收敛理论
域代数上的
数学优化
计算机科学
纯数学
数学分析
物理
计算机安全
量子力学
组合数学
钥匙(锁)
经济
经济增长
作者
Valeria Simoncini,Daniel B. Szyld
标识
DOI:10.1137/s1064827502406415
摘要
We provide a general framework for the understanding of inexact Krylov subspace methods for the solution of symmetric and nonsymmetric linear systems of equations, as well as for certain eigenvalue calculations. This framework allows us to explain the empirical results reported in a series of CERFACS technical reports by Bouras, Frayssé, and Giraud in 2000. Furthermore, assuming exact arithmetic, our analysis can be used to produce computable criteria to bound the inexactness of the matrix-vector multiplication in such a way as to maintain the convergence of the Krylov subspace method. The theory developed is applied to several problems including the solution of Schur complement systems, linear systems which depend on a parameter, and eigenvalue problems. Numerical experiments for some of these scientific applications are reported.
科研通智能强力驱动
Strongly Powered by AbleSci AI