Joint robustness and security enhancement for feature-based image watermarking using invariant feature regions

数字水印 水印 稳健性(进化) 模式识别(心理学) 计算机科学 人工智能 数据挖掘 数学 算法 图像(数学) 生物化学 基因 化学
作者
Jen-Sheng Tsai,Win-Bin Huang,Yau‐Hwang Kuo,Mong-Fong Horng
出处
期刊:Signal Processing [Elsevier]
卷期号:92 (6): 1431-1445 被引量:51
标识
DOI:10.1016/j.sigpro.2011.11.033
摘要

Local image features have been widely applied in feature-based watermarking schemes. The feature invariance is exploited to achieve robustness against attacks, but the leakage of information about hidden watermarks from publicly known locations and sizes of features are often unconsidered in security. This paper, therefore, proposes a novel image watermarking approach, which adopts invariant feature regions to jointly enhance its robustness and security. Initially, circular feature regions are determined by the scale-adapted auto-correlation matrix and the Laplacian-of-Gaussian operation. Leakage of secret information is also controlled carefully during feature detection procedure. An optimal selection process formulated as a multidimensional knapsack problem is then proposed to select robust non-overlapping regions from those circular feature regions to resist various attacks. This process is implemented by a genetic algorithm-based approach, and incorporates randomization to mitigate the security risk. Finally, each selected region is normalized to obtain a geometrically invariant feature region, and embedded with a region-dependent watermark to overcome the weakness of multiple-redundant watermarks. The evaluation results based on the StirMark benchmark present the proposed scheme can tolerate various attacks, including noise-like signal processing and geometric distortions. A security analysis in terms of differential entropy also confirms the security improvement of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crescent完成签到 ,获得积分10
刚刚
无奈傲菡发布了新的文献求助10
刚刚
烟花应助123号采纳,获得10
3秒前
超帅的遥完成签到,获得积分10
3秒前
Zxc完成签到,获得积分10
4秒前
lbt完成签到 ,获得积分10
5秒前
yao完成签到 ,获得积分10
6秒前
6秒前
8秒前
9秒前
9秒前
doudou完成签到 ,获得积分10
9秒前
BCS完成签到,获得积分10
9秒前
领导范儿应助KYN采纳,获得10
9秒前
10秒前
独特的莫言完成签到,获得积分10
12秒前
lin发布了新的文献求助10
13秒前
aero完成签到 ,获得积分10
15秒前
123号完成签到,获得积分10
17秒前
充电宝应助TT采纳,获得10
19秒前
20秒前
20秒前
英姑应助荒野星辰采纳,获得10
22秒前
22秒前
YHY完成签到,获得积分10
24秒前
科研通AI5应助魏伯安采纳,获得10
24秒前
caoyy发布了新的文献求助10
24秒前
25秒前
26秒前
张喻235532完成签到,获得积分10
27秒前
失眠虔纹发布了新的文献求助10
28秒前
香蕉觅云应助糊涂的小伙采纳,获得10
28秒前
28秒前
sutharsons应助科研通管家采纳,获得200
30秒前
打打应助科研通管家采纳,获得10
30秒前
axin应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849