Joint robustness and security enhancement for feature-based image watermarking using invariant feature regions

数字水印 水印 稳健性(进化) 模式识别(心理学) 计算机科学 人工智能 数据挖掘 数学 算法 图像(数学) 生物化学 基因 化学
作者
Jen-Sheng Tsai,Win-Bin Huang,Yau‐Hwang Kuo,Mong-Fong Horng
出处
期刊:Signal Processing [Elsevier]
卷期号:92 (6): 1431-1445 被引量:51
标识
DOI:10.1016/j.sigpro.2011.11.033
摘要

Local image features have been widely applied in feature-based watermarking schemes. The feature invariance is exploited to achieve robustness against attacks, but the leakage of information about hidden watermarks from publicly known locations and sizes of features are often unconsidered in security. This paper, therefore, proposes a novel image watermarking approach, which adopts invariant feature regions to jointly enhance its robustness and security. Initially, circular feature regions are determined by the scale-adapted auto-correlation matrix and the Laplacian-of-Gaussian operation. Leakage of secret information is also controlled carefully during feature detection procedure. An optimal selection process formulated as a multidimensional knapsack problem is then proposed to select robust non-overlapping regions from those circular feature regions to resist various attacks. This process is implemented by a genetic algorithm-based approach, and incorporates randomization to mitigate the security risk. Finally, each selected region is normalized to obtain a geometrically invariant feature region, and embedded with a region-dependent watermark to overcome the weakness of multiple-redundant watermarks. The evaluation results based on the StirMark benchmark present the proposed scheme can tolerate various attacks, including noise-like signal processing and geometric distortions. A security analysis in terms of differential entropy also confirms the security improvement of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanghuiyanyx完成签到,获得积分10
刚刚
GarAnr完成签到,获得积分10
1秒前
南风不竞发布了新的文献求助10
1秒前
糖醋花孙米完成签到,获得积分10
1秒前
bwh发布了新的文献求助10
1秒前
1秒前
Okanryo发布了新的文献求助10
1秒前
云鲲发布了新的文献求助10
2秒前
3秒前
小二郎应助原野小年采纳,获得10
4秒前
huge0114发布了新的文献求助30
4秒前
冷艳的友瑶完成签到,获得积分10
6秒前
6秒前
6秒前
潇湘夜雨发布了新的文献求助10
6秒前
烟花应助菜小芽采纳,获得10
7秒前
8秒前
Stitch完成签到,获得积分10
8秒前
9秒前
xioabu发布了新的文献求助10
10秒前
eurus完成签到,获得积分10
10秒前
是美羊羊完成签到,获得积分10
12秒前
HEIKU应助huge0114采纳,获得10
13秒前
丘比特应助酷酷的雁易采纳,获得10
13秒前
13秒前
原野小年发布了新的文献求助10
15秒前
可爱的函函应助二个虎牙采纳,获得10
16秒前
16秒前
传奇3应助xioabu采纳,获得10
16秒前
17秒前
kc135完成签到,获得积分10
18秒前
eurus发布了新的文献求助10
18秒前
huge0114完成签到,获得积分10
19秒前
Kevin Li完成签到,获得积分10
20秒前
van_发布了新的文献求助10
22秒前
22秒前
活泼富发布了新的文献求助10
23秒前
jiopaaaaa发布了新的文献求助10
24秒前
852应助nater4ver采纳,获得10
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210