The Algorithmic Foundations of Differential Privacy

差别隐私 对手 理论计算机科学 班级(哲学) 计算机科学 差速器(机械装置) 计算 信息隐私 数据科学 算法 计算机安全 人工智能 工程类 航空航天工程
作者
Cynthia Dwork,Aaron Roth
标识
DOI:10.1561/9781601988195
摘要

The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power — certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rekaka发布了新的文献求助10
刚刚
科研通AI2S应助Aria采纳,获得10
1秒前
吉他平方完成签到,获得积分10
2秒前
认真学习发布了新的文献求助10
5秒前
5秒前
Chenglx完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助Rekaka采纳,获得10
9秒前
蔚111完成签到 ,获得积分10
9秒前
Aria完成签到,获得积分20
10秒前
mawenyu完成签到,获得积分10
11秒前
科研小弟完成签到,获得积分10
11秒前
zyw发布了新的文献求助10
12秒前
14秒前
善学以致用应助雪山飞龙采纳,获得10
14秒前
16秒前
温柔野心家完成签到 ,获得积分10
17秒前
Yucorn完成签到 ,获得积分10
18秒前
小叶爱学习完成签到,获得积分10
18秒前
可爱的函函应助tangtang采纳,获得10
18秒前
丽丽完成签到,获得积分10
19秒前
zhanks完成签到,获得积分10
20秒前
123完成签到 ,获得积分10
21秒前
21秒前
小羊爱吃蓝莓完成签到,获得积分10
22秒前
认真学习完成签到,获得积分20
22秒前
24秒前
26秒前
乐乐应助绝版的飞采纳,获得10
26秒前
酷波er应助Ekko采纳,获得10
27秒前
27秒前
美好南晴完成签到,获得积分20
28秒前
满唐完成签到 ,获得积分10
28秒前
性静H情逸发布了新的文献求助20
30秒前
美好南晴发布了新的文献求助10
31秒前
31秒前
羊羊羊发布了新的文献求助10
32秒前
雪山飞龙发布了新的文献求助10
32秒前
32秒前
33秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620