化学
DTNB公司
二硫键
蛋清
谷胱甘肽
色谱法
生物化学
酶
作者
Ann Van Loey,Ann Van Loey,Marc Hendrickx
摘要
The sulfhydryl (SH) content of egg white proteins (10% v/v or 9.64 mg of protein/mL) after heat (50-85 degrees C) and combined heat- and high-pressure treatments (100-700 MPa, 10-60 degrees C) was determined using 5',5-dithiobis (2-nitrobenzoic acid) (DTNB), both for the soluble fraction and the total protein fraction. Only irreversible changes were taken into account. Both physical treatments were performed at two pH levels: pH 7.6, corresponding to the pH of fresh egg white, and pH 8.8, corresponding to that of aged egg white. Both heat and combined heat- and high-pressure treatment resulted in an exposure of buried SH groups. These exposed SH groups were involved in the formation of disulfide bond stabilized protein aggregates, as shown by gel electrophoresis. Under severe processing conditions (above 70 degrees C at atmospheric pressure or above 500-600 MPa, depending on the temperature applied), a decrease in total SH content could be observed, probably due to the formation of disulfide bonds by oxidation, especially at alkaline pH when the thiolate anion was more reactive. The high degree of exposure of sulfhydryl groups, and subsequent oxidation and sulfhydryl-disulfide bond exchange reactions resulting in soluble aggregates, can explain why pressure-induced egg white gels are softer and more elastic than heat-induced ones. When pressure treatment was performed at low temperatures (e.g., 10 degrees C), a lower pressure was required to induce similar changes in the sulfhydryl content, as compared to higher temperatures (e.g., 25 degrees C), indicating an antagonistic effect between pressure and temperature in the domain studied (10-60 degrees C, 100-700 MPa). Treatment conditions resulting in extensive protein insolubilization were accompanied by a transfer of free sulfhydryl groups from the soluble to the insoluble protein fraction. These SH groups were mainly accessible to DTNB.
科研通智能强力驱动
Strongly Powered by AbleSci AI