Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation

反演(地质) 最大值和最小值 算法 数学 数学优化 数学分析 地质学 古生物学 构造盆地
作者
Giancarlo Dal Moro,M. Pipan,Paolo Gabrielli
出处
期刊:Journal of Applied Geophysics [Elsevier]
卷期号:61 (1): 39-55 被引量:168
标识
DOI:10.1016/j.jappgeo.2006.04.002
摘要

Surface wave dispersion curve inversion is a challenging problem for linear inversion procedures due to its highly non-linear nature and to the large numbers of local minima and maxima of the objective function (multi-modality). In order to improve the reliability of the inversion results, we implemented and tested a two-step inversion scheme based on Genetic Algorithms (GAs). The proposed scheme performs several preliminary "parallel" runs (first step) and a final global run using the previously-determined fittest models as starting population. In this work we focus on the inversion of shear-wave velocity and layer thickness while fixing compressional-wave velocity and density according to user-defined Poisson's ratios and velocity–density relationship respectively. The procedure can nonetheless perform the inversion under different degrees of regularization, depending on the a priori information and the desired degree of freedom of the system. Thanks to the large number of considered models, in addition to the fittest model, a mean model and its accuracy are evaluated by means of a statistical approach based on the estimation of the Marginal Posterior Probability Density (MPPD). We tested the proposed GA-based inversion scheme on three synthetic models reproducing a complex structure with low-to-moderate velocity cover (also including a low-velocity channel) lying over hard bedrock. For all the considered cases the bedrock velocity and depth were properly identified, and velocity inversion was reconstructed with minor uncertainties. The performed tests also investigate the influence of the first higher mode, the reduction of the frequency range of the considered dispersion curve as well as the use of different number of strata. While a limited frequency range of the dispersion curve (maximum frequency reduced from 80 to 40 Hz) does not seem to significantly limit the accuracy of the retrieved model, the adoption of the correct number of strata and the addition of the first higher mode help better focus the final solution. In conclusion, the proposed approach represents an improvement of a purely GA-based optimization scheme and the MPPD-based mean model typically offers a more significant and precise solution than the fittest one. Results of the inversion performed on a field data set were validated by borehole stratigraphy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清爽外绣发布了新的文献求助10
1秒前
星辰大海应助憨憨小黄采纳,获得10
1秒前
wwt发布了新的文献求助10
1秒前
1秒前
万能图书馆应助dengy采纳,获得10
2秒前
3秒前
3秒前
zmj应助生活不是电影采纳,获得10
3秒前
霸气豆芽完成签到 ,获得积分10
3秒前
4秒前
烟花应助Shylie采纳,获得10
4秒前
chens627完成签到,获得积分10
4秒前
111完成签到,获得积分10
4秒前
CipherSage应助流浪野王采纳,获得10
4秒前
5秒前
赘婿应助嗣音采纳,获得10
5秒前
5秒前
小晓俊完成签到,获得积分10
5秒前
我是老大应助windcreator采纳,获得10
5秒前
6秒前
6秒前
7秒前
JJ发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
丁圣元发布了新的文献求助10
8秒前
zimo发布了新的文献求助10
8秒前
8秒前
充电宝应助落花采纳,获得10
8秒前
烟花应助清爽外绣采纳,获得30
8秒前
佳仔发布了新的文献求助10
9秒前
Tang完成签到,获得积分10
9秒前
111发布了新的文献求助10
10秒前
正直芒果完成签到,获得积分10
10秒前
舒敏完成签到,获得积分20
10秒前
Jasper应助LCX采纳,获得50
10秒前
景行完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532190
求助须知:如何正确求助?哪些是违规求助? 4620957
关于积分的说明 14575781
捐赠科研通 4560709
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478927
关于科研通互助平台的介绍 1450190