估计员
单变量
替代(逻辑)
多元统计
算法
数学
基函数
基础(线性代数)
背景(考古学)
计算机科学
功能(生物学)
数学优化
统计
生物
数学分析
古生物学
几何学
程序设计语言
进化生物学
作者
Sandra E. Sinisi,Mark J. van der Laan
标识
DOI:10.2202/1544-6115.1069
摘要
van der Laan and Dudoit (2003) provide a road map for estimation and performance assessment where a parameter of interest is defined as the risk minimizer for a suitable loss function and candidate estimators are generated using a loss function. After briefly reviewing this approach, this article proposes a general deletion/substitution/addition algorithm for minimizing, over subsets of variables (e.g., basis functions), the empirical risk of subset-specific estimators of the parameter of interest. This algorithm provides us with a new class of loss-based cross-validated algorithms in prediction of univariate outcomes, which can be extended to handle multivariate outcomes, conditional density and hazard estimation, and censored outcomes such as survival. In the context of regression, using polynomial basis functions, we study the properties of the deletion/substitution/addition algorithm in simulations and apply the method to detect transcription factor binding sites in yeast gene expression experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI